These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 27046612)

  • 1. Development of Four Dimensional Human Model that Enables Deformation of Skin, Organs and Blood Vessel System During Body Movement - Visualizing Movements of the Musculoskeletal System.
    Suzuki N; Hattori A; Hashizume M
    Stud Health Technol Inform; 2016; 220():396-402. PubMed ID: 27046612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphic-based musculoskeletal model for biomechanical analyses and animation.
    Chao EY
    Med Eng Phys; 2003 Apr; 25(3):201-12. PubMed ID: 12589718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OpenSim: open-source software to create and analyze dynamic simulations of movement.
    Delp SL; Anderson FC; Arnold AS; Loan P; Habib A; John CT; Guendelman E; Thelen DG
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1940-50. PubMed ID: 18018689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics.
    Ren L; Jones RK; Howard D
    J Biomech; 2008 Aug; 41(12):2750-9. PubMed ID: 18672243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. I.3. Dynamics of human movement.
    Koopman BH
    Stud Health Technol Inform; 2010; 152():27-44. PubMed ID: 20407184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Animation control of surface motion capture.
    Tejera M; Casas D; Hilton A
    IEEE Trans Cybern; 2013 Dec; 43(6):1532-45. PubMed ID: 23807478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtualized reality: perspectives on 4D digitization of dynamic events.
    Kanade T; Narayanan PJ
    IEEE Comput Graph Appl; 2007; 27(3):32-40. PubMed ID: 17523360
    [No Abstract]   [Full Text] [Related]  

  • 8. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints.
    Lu TW; O'Connor JJ
    J Biomech; 1999 Feb; 32(2):129-34. PubMed ID: 10052917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.
    Wu T; Hung A; Mithraratne K
    IEEE Trans Vis Comput Graph; 2014 Nov; 20(11):1519-29. PubMed ID: 26355331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer system for definition of the quantitative geometry of musculature from CT images.
    Daniel M; Iglic A; Kralj-Iglic V; Konvicková S
    Comput Methods Biomech Biomed Engin; 2005 Feb; 8(1):25-9. PubMed ID: 16154867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of toe marker placement error on joint kinematics and muscle forces using OpenSim gait simulation.
    Xu H; Merryweather A; Bloswick D; Mao Q; Wang T
    Biomed Mater Eng; 2015; 26 Suppl 1():S685-91. PubMed ID: 26406064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impulse-based control of joints and muscles.
    Weinstein R; Guendelman E; Fedkiw R
    IEEE Trans Vis Comput Graph; 2008; 14(1):37-46. PubMed ID: 17993700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models.
    Halloran JP; Erdemir A; van den Bogert AJ
    J Biomech Eng; 2009 Jan; 131(1):011014. PubMed ID: 19045930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seeing people in different light--joint shape, motion, and reflectance capture.
    Theobalt C; Ahmed N; Lensch H; Magnor M; Seidel HP
    IEEE Trans Vis Comput Graph; 2007; 13(4):663-74. PubMed ID: 17495327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking.
    Fraysse F; Dumas R; Cheze L; Wang X
    J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-dimensional sagittal plane model of normal human walking.
    Srinivasan S; Raptis IA; Westervelt ER
    J Biomech Eng; 2008 Oct; 130(5):051017. PubMed ID: 19045524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of walking and running: center of mass movements to muscle action.
    Farley CT; Ferris DP
    Exerc Sport Sci Rev; 1998; 26():253-85. PubMed ID: 9696992
    [No Abstract]   [Full Text] [Related]  

  • 20. Investigation of soft tissue movement during level walking: translations and rotations of skin markers.
    Gao B; Zheng NN
    J Biomech; 2008 Nov; 41(15):3189-95. PubMed ID: 18930462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.