These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 27046852)

  • 1. Frequency Analysis and Feature Reduction Method for Prediction of Cerebral Palsy in Young Infants.
    Rahmati H; Martens H; Aamo OM; Stavdahl O; Stoen R; Adde L
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1225-1234. PubMed ID: 27046852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait.
    Kamruzzaman J; Begg RK
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2479-90. PubMed ID: 17153205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms.
    Alaqtash M; Sarkodie-Gyan T; Yu H; Fuentes O; Brower R; Abdelgawad A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():453-7. PubMed ID: 22254346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optical flow-based method to predict infantile cerebral palsy.
    Stahl A; Schellewald C; Stavdahl Ø; Aamo OM; Adde L; Kirkerød H
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):605-14. PubMed ID: 22531824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a neuro-fuzzy network for gait event detection using electromyography in the child with cerebral palsy.
    Lauer RT; Smith BT; Betz RR
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1532-40. PubMed ID: 16189966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency-based features for early cerebral palsy prediction.
    Rahmati H; Martens H; Aamo OM; Stavdahl Ø; Støen R; Adde L
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5187-90. PubMed ID: 26737460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semantic pyramids for gender and action recognition.
    Khan FS; van de Weijer J; Anwer RM; Felsberg M; Gatta C
    IEEE Trans Image Process; 2014 Aug; 23(8):3633-45. PubMed ID: 24956369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A random forest model based classification scheme for neonatal amplitude-integrated EEG.
    Chen W; Wang Y; Cao G; Chen G; Gu Q
    Biomed Eng Online; 2014; 13 Suppl 2(Suppl 2):S4. PubMed ID: 25560269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of amyotrophic lateral sclerosis disease using factorial hidden Markov model.
    Khorasani A; Daliri MR; Pooyan M
    Biomed Tech (Berl); 2016 Feb; 61(1):119-26. PubMed ID: 26110481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harmonic analysis of force platform data in normal and cerebral palsy gait.
    White R; Agouris I; Fletcher E
    Clin Biomech (Bristol); 2005 Jun; 20(5):508-16. PubMed ID: 15836938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Video-based early cerebral palsy prediction using motion segmentation.
    Rahmati H; Aamo OM; Stavdahl Ø; Dragon R; Adde L
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3779-83. PubMed ID: 25570814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online Segmentation of Human Motion for Automated Rehabilitation Exercise Analysis.
    Lin JF; Kulić D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):168-80. PubMed ID: 23661321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the automated removal of artifacts related to head movement from the EEG.
    Daly I; Billinger M; Scherer R; Muller-Putz G
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):427-34. PubMed ID: 23673459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel sensorized shoe system to classify gait severity in children with cerebral palsy.
    Mancinelli C; Patel S; Deming LC; Nimec D; Chu JJ; Beckwith J; Greenwald R; Bonato P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5010-3. PubMed ID: 23367053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity Classification Using Mobile Phone based Motion Sensing and Distributed Computing.
    Artetxe A; Beristain A; Kabongo L
    Stud Health Technol Inform; 2014; 207():1-10. PubMed ID: 25488205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combination of rough-based feature selection and RBF neural network for classification using gene expression data.
    Chiang JH; Ho SH
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):91-9. PubMed ID: 18334459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early prediction of cerebral palsy by computer-based video analysis of general movements: a feasibility study.
    Adde L; Helbostad JL; Jensenius AR; Taraldsen G; Grunewaldt KH; Støen R
    Dev Med Child Neurol; 2010 Aug; 52(8):773-8. PubMed ID: 20187882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Tracking and Quantification of Autistic Behavioral Symptoms Using Microsoft Kinect.
    Kang JY; Kim R; Kim H; Kang Y; Hahn S; Fu Z; Khalid MI; Schenck E; Thesen T
    Stud Health Technol Inform; 2016; 220():167-70. PubMed ID: 27046572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improve Glioblastoma Multiforme Prognosis Prediction by Using Feature Selection and Multiple Kernel Learning.
    Zhang Y; Li A; Peng C; Wang M
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):825-835. PubMed ID: 27071189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging.
    Fazlollahi A; Meriaudeau F; Giancardo L; Villemagne VL; Rowe CC; Yates P; Salvado O; Bourgeat P;
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 3():269-76. PubMed ID: 26560677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.