These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27046879)

  • 1. A Novel Electrical Model for Advection-Diffusion-Based Molecular Communication in Nanonetworks.
    Azadi M; Abouei J
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):246-57. PubMed ID: 27046879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-MoSK Modulation in Molecular Communications.
    Kabir MH; Islam SM; Kwak KS
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):680-3. PubMed ID: 26335557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Reactive Receiver Modeling for Diffusive Molecular Communication Systems: Reversible Binding, Molecule Degradation, and Finite Number of Receptors.
    Ahmadzadeh A; Arjmandi H; Burkovski A; Schober R
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):713-727. PubMed ID: 27654883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo Analysis of Molecule Absorption Probabilities in Diffusion-Based Nanoscale Communication Systems with Multiple Receivers.
    Arifler D; Arifler D
    IEEE Trans Nanobioscience; 2017 Apr; 16(3):157-165. PubMed ID: 28368824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial Distance Estimation and Signal Detection for Diffusive Mobile Molecular Communication.
    Huang S; Lin L; Guo W; Yan H; Xu J; Liu F
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):422-433. PubMed ID: 32275604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation Modeling and Analysis of Molecular Motors in Molecular Communication.
    Chahibi Y; Akyildiz IF; Balasingham I
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):917-927. PubMed ID: 28092503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale communication with molecular arrays in nanonetworks.
    Atakan B; Galmes S; Akan OB
    IEEE Trans Nanobioscience; 2012 Jun; 11(2):149-60. PubMed ID: 22287254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical Analysis of Received Signal and Error Performance for Mobile Molecular Communication.
    Huang S; Lin L; Yan H; Xu J; Liu F
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):415-427. PubMed ID: 30932843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacity and Delay Spread in Multilayer Diffusion-Based Molecular Communication (DBMC) Channel.
    Md Mustam S; Syed-Yusof SK; Zubair S
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):599-612. PubMed ID: 27893397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Complexity Noncoherent Signal Detection for Nanoscale Molecular Communications.
    Li B; Sun M; Wang S; Guo W; Zhao C
    IEEE Trans Nanobioscience; 2016 Jan; 15(1):3-10. PubMed ID: 26685259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achievable Strength-Based Signal Detection in Quantity-Constrained PAM OOK Concentration-Encoded Molecular Communication.
    Mahfuz MU
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):619-626. PubMed ID: 27834649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Analytical Model for Molecular Propagation in Nanocommunication via Filaments Using Relay-Enabled Nodes.
    Darchinimaragheh K; Alfa AS
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):870-81. PubMed ID: 26529773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutual Information and Maximum Achievable Rate for Mobile Molecular Communication Systems.
    Lin L; Wu Q; Liu F; Yan H
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):507-517. PubMed ID: 30235143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation Delay and Loss Analysis for Bacteria-Based Nanocommunications.
    Petrov V; Moltchanov D; Akyildiz IF; Koucheryavy Y
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):627-638. PubMed ID: 27429440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On Gradient Descent Optimization in Diffusion-Advection Based 3-D Molecular Cooperative Communication.
    Chouhan L; Varshney N; Sharma PK
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):347-356. PubMed ID: 32603294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ISI-mitigating modulation scheme using ion reaction for molecular communications.
    Jing D; Li Y; Hang R; Wu Z; Zhang H
    IET Nanobiotechnol; 2019 Sep; 13(7):674-681. PubMed ID: 31573535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Complexity Adaptive Threshold Detection for Molecular Communication.
    Damrath M; Hoeher PA
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):200-8. PubMed ID: 26812729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal receiver design for diffusive molecular communication with flow and additive noise.
    Noel A; Cheung KC; Schober R
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):350-62. PubMed ID: 25095257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving receiver performance of diffusive molecular communication with enzymes.
    Noel A; Cheung KC; Schober R
    IEEE Trans Nanobioscience; 2014 Mar; 13(1):31-43. PubMed ID: 24594512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-ISI Demodulation Scheme and Its Experiment-Based Evaluation for Diffusion-Based Molecular Communication.
    Zhai H; Liu Q; Vasilakos AV; Yang K; Haoyang Zhai ; Qiang Liu ; Vasilakos AV; Kun Yang ; Liu Q; Yang K; Zhai H; Vasilakos AV
    IEEE Trans Nanobioscience; 2018 Apr; 17(2):126-133. PubMed ID: 29870336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.