These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27047328)

  • 1. Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways during Decision-Making and Reinforcement Learning.
    Dunovan K; Verstynen T
    Front Neurosci; 2016; 10():106. PubMed ID: 27047328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of reinforcement learning and optimal decision-making theories of the basal ganglia.
    Bogacz R; Larsen T
    Neural Comput; 2011 Apr; 23(4):817-51. PubMed ID: 21222528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylcholine-based entropy in response selection: a model of how striatal interneurons modulate exploration, exploitation, and response variability in decision-making.
    Stocco A
    Front Neurosci; 2012; 6():18. PubMed ID: 22347164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actor-critic models of the basal ganglia: new anatomical and computational perspectives.
    Joel D; Niv Y; Ruppin E
    Neural Netw; 2002; 15(4-6):535-47. PubMed ID: 12371510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the indirect pathway of the basal ganglia in perceptual decision making.
    Wei W; Rubin JE; Wang XJ
    J Neurosci; 2015 Mar; 35(9):4052-64. PubMed ID: 25740532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinforcement-based decision making in corticostriatal circuits: mutual constraints by neurocomputational and diffusion models.
    Ratcliff R; Frank MJ
    Neural Comput; 2012 May; 24(5):1186-229. PubMed ID: 22295983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reward Based Motor Adaptation Mediated by Basal Ganglia.
    Kim T; Hamade KC; Todorov D; Barnett WH; Capps RA; Latash EM; Markin SN; Rybak IA; Molkov YI
    Front Comput Neurosci; 2017; 11():19. PubMed ID: 28408878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Avian Basal Ganglia Are a Source of Rapid Behavioral Variation That Enables Vocal Motor Exploration.
    Kojima S; Kao MH; Doupe AJ; Brainard MS
    J Neurosci; 2018 Nov; 38(45):9635-9647. PubMed ID: 30249800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopaminergic Control of the Exploration-Exploitation Trade-Off via the Basal Ganglia.
    Humphries MD; Khamassi M; Gurney K
    Front Neurosci; 2012; 6():9. PubMed ID: 22347155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of the basal ganglia to action sequence learning and performance.
    Garr E
    Neurosci Biobehav Rev; 2019 Dec; 107():279-295. PubMed ID: 31541637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning arm's posture control using reinforcement learning and feedback-error-learning.
    Kambara H; Kim J; Sato M; Koike Y
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2006():486-9. PubMed ID: 17271719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action selection performance of a reconfigurable basal ganglia inspired model with Hebbian-Bayesian Go-NoGo connectivity.
    Berthet P; Hellgren-Kotaleski J; Lansner A
    Front Behav Neurosci; 2012; 6():65. PubMed ID: 23060764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reward-driven changes in striatal pathway competition shape evidence evaluation in decision-making.
    Dunovan K; Vich C; Clapp M; Verstynen T; Rubin J
    PLoS Comput Biol; 2019 May; 15(5):e1006998. PubMed ID: 31060045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling basal ganglia for understanding Parkinsonian reaching movements.
    Magdoom KN; Subramanian D; Chakravarthy VS; Ravindran B; Amari S; Meenakshisundaram N
    Neural Comput; 2011 Feb; 23(2):477-516. PubMed ID: 21105828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of prediction and outcomes in adaptive cognitive control.
    Schiffer AM; Waszak F; Yeung N
    J Physiol Paris; 2015; 109(1-3):38-52. PubMed ID: 25698177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control.
    Dasgupta S; Wörgötter F; Manoonpong P
    Front Neural Circuits; 2014; 8():126. PubMed ID: 25389391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors.
    Lambot L; Chaves Rodriguez E; Houtteman D; Li Y; Schiffmann SN; Gall D; de Kerchove d'Exaerde A
    J Neurosci; 2016 May; 36(18):4976-92. PubMed ID: 27147651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism.
    Frank MJ
    J Cogn Neurosci; 2005 Jan; 17(1):51-72. PubMed ID: 15701239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning.
    Chersi F; Mirolli M; Pezzulo G; Baldassarre G
    Neural Netw; 2013 May; 41():212-24. PubMed ID: 23266482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Computational Model of Dual Competition between the Basal Ganglia and the Cortex.
    Topalidou M; Kase D; Boraud T; Rougier NP
    eNeuro; 2018; 5(6):. PubMed ID: 30627653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.