BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27047343)

  • 1. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine.
    Dau A; Friederich U; Dongre S; Li X; Bollepalli MK; Hardie RC; Juusola M
    Front Neural Circuits; 2016; 10():19. PubMed ID: 27047343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Participation of the histamine receptor encoded by the gene hclB (HCLB) in visual sensitivity control: an electroretinographic study in Drosophila melanogaster.
    Kupenova P; Yusein-Myashkova S
    Mol Vis; 2012; 18():2497-508. PubMed ID: 23077407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedback network controls photoreceptor output at the layer of first visual synapses in Drosophila.
    Zheng L; de Polavieja GG; Wolfram V; Asyali MH; Hardie RC; Juusola M
    J Gen Physiol; 2006 May; 127(5):495-510. PubMed ID: 16636201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreceptor neurons find new synaptic targets when misdirected by overexpressing runt in Drosophila.
    Edwards TN; Meinertzhagen IA
    J Neurosci; 2009 Jan; 29(3):828-41. PubMed ID: 19158307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of Na(+)/K(+)-ATPase in Drosophila photoreceptors leads to blindness and age-dependent neurodegeneration.
    Luan Z; Reddig K; Li HS
    Exp Neurol; 2014 Nov; 261():791-801. PubMed ID: 25205229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye: II mechanisms.
    Nikolaev A; Zheng L; Wardill TJ; O'Kane CJ; de Polavieja GG; Juusola M
    PLoS One; 2009; 4(1):e4306. PubMed ID: 19180195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels.
    Vähäsöyrinki M; Niven JE; Hardie RC; Weckström M; Juusola M
    J Neurosci; 2006 Mar; 26(10):2652-60. PubMed ID: 16525044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of carcinine in signaling at the Drosophila photoreceptor synapse.
    Gavin BA; Arruda SE; Dolph PJ
    PLoS Genet; 2007 Dec; 3(12):e206. PubMed ID: 18069895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monosynaptic connections between identified A and B photoreceptors and interneurons in Hermissenda: evidence for labeled-lines.
    Crow T; Tian LM
    J Neurophysiol; 2000 Jul; 84(1):367-75. PubMed ID: 10899211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila.
    Chaturvedi R; Reddig K; Li HS
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2812-7. PubMed ID: 24550312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective histamine uptake rescues photo- and mechanoreceptor function of histidine decarboxylase-deficient Drosophila mutant.
    Melzig J; Burg M; Gruhn M; Pak WL; Buchner E
    J Neurosci; 1998 Sep; 18(18):7160-6. PubMed ID: 9736639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer of graded potentials at the photoreceptor-interneuron synapse.
    Juusola M; Uusitalo RO; Weckström M
    J Gen Physiol; 1995 Jan; 105(1):117-48. PubMed ID: 7537323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological characteristics and central projections of two types of interneurons in the visual pathway of Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2002 Jan; 87(1):322-32. PubMed ID: 11784753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct roles for two histamine receptors (hclA and hclB) at the Drosophila photoreceptor synapse.
    Pantazis A; Segaran A; Liu CH; Nikolaev A; Rister J; Thum AS; Roeder T; Semenov E; Juusola M; Hardie RC
    J Neurosci; 2008 Jul; 28(29):7250-9. PubMed ID: 18632929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca
    Li X; Abou Tayoun A; Song Z; Dau A; Rien D; Jaciuch D; Dongre S; Blanchard F; Nikolaev A; Zheng L; Bollepalli MK; Chu B; Hardie RC; Dolph PJ; Juusola M
    J Neurosci; 2019 Sep; 39(36):7132-7154. PubMed ID: 31350259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye: I dynamics.
    Zheng L; Nikolaev A; Wardill TJ; O'Kane CJ; de Polavieja GG; Juusola M
    PLoS One; 2009; 4(1):e4307. PubMed ID: 19180196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histamine Recycling Is Mediated by CarT, a Carcinine Transporter in Drosophila Photoreceptors.
    Xu Y; An F; Borycz JA; Borycz J; Meinertzhagen IA; Wang T
    PLoS Genet; 2015 Dec; 11(12):e1005764. PubMed ID: 26713872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-independent prespecification of synaptic partners in the visual map of Drosophila.
    Hiesinger PR; Zhai RG; Zhou Y; Koh TW; Mehta SQ; Schulze KL; Cao Y; Verstreken P; Clandinin TR; Fischbach KF; Meinertzhagen IA; Bellen HJ
    Curr Biol; 2006 Sep; 16(18):1835-43. PubMed ID: 16979562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Drosophila SK channel (dSK) contributes to photoreceptor performance by mediating sensitivity control at the first visual network.
    Abou Tayoun AN; Li X; Chu B; Hardie RC; Juusola M; Dolph PJ
    J Neurosci; 2011 Sep; 31(39):13897-910. PubMed ID: 21957252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinophilin is a light-regulated phosphoprotein required to suppress photoreceptor dark noise in Drosophila.
    Mecklenburg KL; Takemori N; Komori N; Chu B; Hardie RC; Matsumoto H; O'Tousa JE
    J Neurosci; 2010 Jan; 30(4):1238-49. PubMed ID: 20107052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.