These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27047674)

  • 1. Can microfluidics address biomanufacturing challenges in drug/gene/cell therapies?
    Chan HF; Ma S; Leong KW
    Regen Biomater; 2016 Jun; 3(2):87-98. PubMed ID: 27047674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Systems For Manufacturing of Microparticle-Based Drug-Delivery Systems: Design, Construction, and Operation.
    Yonet-Tanyeri N; Amer M; Balmert SC; Korkmaz E; Falo LD; Little SR
    ACS Biomater Sci Eng; 2022 Jul; 8(7):2864-2877. PubMed ID: 35674145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening.
    Ahn J; Ko J; Lee S; Yu J; Kim Y; Jeon NL
    Adv Drug Deliv Rev; 2018 Mar; 128():29-53. PubMed ID: 29626551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Drug Delivery Systems: From Medicine to Agriculture.
    Vega-Vásquez P; Mosier NS; Irudayaraj J
    Front Bioeng Biotechnol; 2020; 8():79. PubMed ID: 32133353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems.
    Martins JP; Torrieri G; Santos HA
    Expert Opin Drug Deliv; 2018 May; 15(5):469-479. PubMed ID: 29508630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research highlights: micro-engineered therapies.
    Kong JE; Kahkeshani S; Pushkarsky I; Di Carlo D
    Lab Chip; 2014 Dec; 14(24):4585-9. PubMed ID: 25353397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel encapsulation systems and processes for overcoming the challenges of polypharmacy.
    Orlu-Gul M; Topcu AA; Shams T; Mahalingam S; Edirisinghe M
    Curr Opin Pharmacol; 2014 Oct; 18():28-34. PubMed ID: 25180789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomaterials Meet Microfluidics: From Synthesis Technologies to Biological Applications.
    Ma J; Wang Y; Liu J
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering and evaluating drug delivery particles in microfluidic devices.
    Björnmalm M; Yan Y; Caruso F
    J Control Release; 2014 Sep; 190():139-49. PubMed ID: 24794898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Drug Delivery System Fabricated by Microfluidics for Disease Therapy.
    Jia F; Gao Y; Wang H
    Bioengineering (Basel); 2022 Oct; 9(11):. PubMed ID: 36354536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of nanoparticle drug delivery systems with microfluidics tools.
    Khan IU; Serra CA; Anton N; Vandamme TF
    Expert Opin Drug Deliv; 2015 Apr; 12(4):547-62. PubMed ID: 25345543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy.
    Huang P; Wang X; Liang X; Yang J; Zhang C; Kong D; Wang W
    Acta Biomater; 2019 Feb; 85():1-26. PubMed ID: 30579043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Methods for Fabrication and Engineering of Nanoparticle Drug Delivery Systems.
    Zhang L; Chen Q; Ma Y; Sun J
    ACS Appl Bio Mater; 2020 Jan; 3(1):107-120. PubMed ID: 35019430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated and reconfigurable platform for niosome generation based on a microfluidic architecture.
    Tessier F; Laprise-Pelletier M; Boilard E; Fortin MA; Miled A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2998-3001. PubMed ID: 28268943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of microfluidics in protein formulations with pre-programmed functional characteristics.
    Meng H; Deng S; You Y; Chan HF
    Biologics; 2018; 12():191-197. PubMed ID: 30584273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving continuous manufacturing: technologies and approaches for synthesis, workup, and isolation of drug substance. May 20-21, 2014 Continuous Manufacturing Symposium.
    Baxendale IR; Braatz RD; Hodnett BK; Jensen KF; Johnson MD; Sharratt P; Sherlock JP; Florence AJ
    J Pharm Sci; 2015 Mar; 104(3):781-91. PubMed ID: 25470351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles.
    Ozcelikkale A; Moon HR; Linnes M; Han B
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Sep; 9(5):. PubMed ID: 28198106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optoelectrokinetics-based microfluidic platform for bioapplications: A review of recent advances.
    Liang W; Liu L; Zhang H; Wang Y; Li WJ
    Biomicrofluidics; 2019 Sep; 13(5):051502. PubMed ID: 31558919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEMS and microfluidics for diagnostics devices.
    Rosen Y; Gurman P
    Curr Pharm Biotechnol; 2010 Jun; 11(4):366-75. PubMed ID: 20199381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D nano- and micro-patterning of biomaterials for controlled drug delivery.
    Curry EJ; Henoun AD; Miller AN; Nguyen TD
    Ther Deliv; 2017 Jan; 8(1):15-28. PubMed ID: 27982732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.