BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 2704791)

  • 1. Thermalization of subexcitation electrons in solid water.
    Goulet T; Jay-Gerin JP
    Radiat Res; 1989 Apr; 118(1):46-62. PubMed ID: 2704791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak.
    González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A
    Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice.
    Liljequist D
    Int J Radiat Biol; 2012 Jan; 88(1-2):50-3. PubMed ID: 21615241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Monte Carlo program for the analysis of low-energy electron tracks in liquid water.
    Wiklund K; Fernández-Varea JM; Lind BK
    Phys Med Biol; 2011 Apr; 56(7):1985-2003. PubMed ID: 21364263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison and assessment of electron cross sections for Monte Carlo track structure codes.
    Uehara S; Nikjoo H; Goodhead DT
    Radiat Res; 1999 Aug; 152(2):202-13. PubMed ID: 10409331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular S-factors for low-energy electrons: a comparison of Monte Carlo simulations and continuous-slowing-down calculations.
    Emfietzoglou D; Kostarelos K; Hadjidoukas P; Bousis C; Fotopoulos A; Pathak A; Nikjoo H
    Int J Radiat Biol; 2008 Dec; 84(12):1034-44. PubMed ID: 19061127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positron follow-up in liquid water: I. A new Monte Carlo track-structure code.
    Champion C; Le Loirec C
    Phys Med Biol; 2006 Apr; 51(7):1707-23. PubMed ID: 16552099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent yield of the hydrated electron in subcritical and supercritical water studied by ultrafast pulse radiolysis and Monte-Carlo simulation.
    Muroya Y; Sanguanmith S; Meesungnoen J; Lin M; Yan Y; Katsumura Y; Jay-Gerin JP
    Phys Chem Chem Phys; 2012 Nov; 14(41):14325-33. PubMed ID: 23007023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CELLDOSE: a Monte Carlo code to assess electron dose distribution--S values for 131I in spheres of various sizes.
    Champion C; Zanotti-Fregonara P; Hindié E
    J Nucl Med; 2008 Jan; 49(1):151-7. PubMed ID: 18077517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron track simulation using ETMICRO.
    Kim EH
    Radiat Prot Dosimetry; 2006; 122(1-4):53-5. PubMed ID: 17182606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo track structure for radiation biology and space applications.
    Nikjoo H; Uehara S; Khvostunov IG; Cucinotta FA; Wilson WE; Goodhead DT
    Phys Med; 2001; 17 Suppl 1():38-44. PubMed ID: 11770535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron energy-loss distributions in solid, dry DNA.
    LaVerne JA; Pimblott SM
    Radiat Res; 1995 Feb; 141(2):208-15. PubMed ID: 7838960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of DNA strand breaks induced by monoenergetic electrons using higher-order structure models of DNA.
    Tomita H; Kai M; Kusama T; Aoki Y; Ito A
    Int J Radiat Biol; 1994 Dec; 66(6):669-82. PubMed ID: 7814967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute scattering probabilities for subexcitation electrons in condensed H2O.
    Bader G; Chiasson J; Caron LG; Michaud M; Perluzzo G; Sanche L
    Radiat Res; 1988 Jun; 114(3):467-79. PubMed ID: 3375436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2008 Jul; 53(14):3739-61. PubMed ID: 18574312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS.
    Vilches M; García-Pareja S; Guerrero R; Anguiano M; Lallena AM
    Radiother Oncol; 2008 Jan; 86(1):104-8. PubMed ID: 18086502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density dependence of the yield of hydrated electrons in the low-LET radiolysis of supercritical water at 400 °C: influence of the geminate recombination of subexcitation-energy electrons prior to thermalization.
    Meesungnoen J; Sanguanmith S; Jay-Gerin JP
    Phys Chem Chem Phys; 2013 Oct; 15(39):16450-5. PubMed ID: 23999799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of ion clusters by low-energy electrons in nanometric targets: experiment and Monte Carlo simulation.
    Bantsar A; Grosswendt B; Pszona S
    Radiat Prot Dosimetry; 2006; 122(1-4):82-5. PubMed ID: 17251251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for the Simulation of the Slowing of Low-Energy Electrons in Water.
    Smith ME; Green NJB; Pimblott SM
    J Comput Chem; 2018 Oct; 39(26):2217-2225. PubMed ID: 30238486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.