These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 27048629)
21. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall. Shoae-Hassani A; Mortazavi-Tabatabaei SA; Sharif S; Seifalian AM; Azimi A; Samadikuchaksaraei A; Verdi J J Tissue Eng Regen Med; 2015 Nov; 9(11):1268-76. PubMed ID: 23319462 [TBL] [Abstract][Full Text] [Related]
22. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Yang F; Murugan R; Wang S; Ramakrishna S Biomaterials; 2005 May; 26(15):2603-10. PubMed ID: 15585263 [TBL] [Abstract][Full Text] [Related]
24. In vitro study on electrospun lecithin-based poly (L-lactic acid) scaffolds and their biocompatibility. Xu Z; Liu P; Li H; Zhang M; Wu Q J Biomater Sci Polym Ed; 2020 Dec; 31(17):2285-2298. PubMed ID: 32723020 [TBL] [Abstract][Full Text] [Related]
25. In vivo biofunctionality comparison of different topographic PLLA scaffolds. Lee BN; Kim DY; Kang HJ; Kwon JS; Park YH; Chun HJ; Kim JH; Lee HB; Min BH; Kim MS J Biomed Mater Res A; 2012 Jul; 100(7):1751-60. PubMed ID: 22467280 [TBL] [Abstract][Full Text] [Related]
26. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133 [TBL] [Abstract][Full Text] [Related]
28. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering. Li Z; Liu P; Yang T; Sun Y; You Q; Li J; Wang Z; Han B J Biomater Appl; 2016 May; 30(10):1552-65. PubMed ID: 27059497 [TBL] [Abstract][Full Text] [Related]
29. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Yuan W; Feng Y; Wang H; Yang D; An B; Zhang W; Khan M; Guo J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3644-51. PubMed ID: 23910260 [TBL] [Abstract][Full Text] [Related]
30. Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds. Morris GE; Bridge JC; Eltboli OM; Lewis MP; Knox AJ; Aylott JW; Brightling CE; Ghaemmaghami AM; Rose FR Am J Physiol Lung Cell Mol Physiol; 2014 Jul; 307(1):L38-47. PubMed ID: 24793171 [TBL] [Abstract][Full Text] [Related]
31. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Xu C; Inai R; Kotaki M; Ramakrishna S Tissue Eng; 2004; 10(7-8):1160-8. PubMed ID: 15363172 [TBL] [Abstract][Full Text] [Related]
32. Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering. Zhang K; Huang D; Yan Z; Wang C J Biomed Mater Res A; 2017 Jul; 105(7):1900-1910. PubMed ID: 28256802 [TBL] [Abstract][Full Text] [Related]
33. Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Stachewicz U; Szewczyk PK; Kruk A; Barber AH; Czyrska-Filemonowicz A Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():397-408. PubMed ID: 30573264 [TBL] [Abstract][Full Text] [Related]
34. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Tutak W; Sarkar S; Lin-Gibson S; Farooque TM; Jyotsnendu G; Wang D; Kohn J; Bolikal D; Simon CG Biomaterials; 2013 Mar; 34(10):2389-98. PubMed ID: 23312903 [TBL] [Abstract][Full Text] [Related]
35. Biomimetic scaffold containing PVDF nanofibers with sustained TGF-β release in combination with AT-MSCs for bladder tissue engineering. Ardeshirylajimi A; Ghaderian SM; Omrani MD; Moradi SL Gene; 2018 Nov; 676():195-201. PubMed ID: 30030200 [TBL] [Abstract][Full Text] [Related]
36. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Blakeney BA; Tambralli A; Anderson JM; Andukuri A; Lim DJ; Dean DR; Jun HW Biomaterials; 2011 Feb; 32(6):1583-90. PubMed ID: 21112625 [TBL] [Abstract][Full Text] [Related]
37. Multilayer cell-seeded polymer nanofiber constructs for soft-tissue reconstruction. Barker DA; Bowers DT; Hughley B; Chance EW; Klembczyk KJ; Brayman KL; Park SS; Botchwey EA JAMA Otolaryngol Head Neck Surg; 2013 Sep; 139(9):914-22. PubMed ID: 24051747 [TBL] [Abstract][Full Text] [Related]
38. Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering. Bakhshandeh B; Soleimani M; Ghaemi N; Shabani I Acta Pharmacol Sin; 2011 May; 32(5):626-36. PubMed ID: 21516135 [TBL] [Abstract][Full Text] [Related]
39. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites. Chan JP; Battiston KG; Santerre JP Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683 [TBL] [Abstract][Full Text] [Related]
40. Electrospun tubular scaffold with circumferentially aligned nanofibers for regulating smooth muscle cell growth. Wang Y; Shi H; Qiao J; Tian Y; Wu M; Zhang W; Lin Y; Niu Z; Huang Y ACS Appl Mater Interfaces; 2014 Feb; 6(4):2958-62. PubMed ID: 24417638 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]