These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27049110)

  • 1. The apparent charge of nanoparticles trapped at a water interface.
    Bossa GV; Roth J; Bohinc K; May S
    Soft Matter; 2016 May; 12(18):4229-40. PubMed ID: 27049110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dipole Moment of a Charged Particle Trapped at the Air-Water Interface.
    Bossa GV; Bohinc K; Brown MA; May S
    J Phys Chem B; 2016 Jul; 120(26):6278-85. PubMed ID: 27105758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immersion depth of positively versus negatively charged nanoparticles at the air-water interface: a Poisson-Boltzmann model.
    Shrestha A; Bohinc K; May S
    Langmuir; 2012 Oct; 28(40):14301-7. PubMed ID: 22970716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of particle size and residual charge on electrostatic interactions between charged colloidal particles at an oil-water interface.
    Uppapalli S; Zhao H
    Soft Matter; 2014 Jul; 10(25):4555-60. PubMed ID: 24817608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A semi-analytical calculation of the electrostatic pair interaction between nonuniformly charged colloidal spheres at an air-water interface.
    Lian Z
    J Chem Phys; 2016 Jul; 145(1):014901. PubMed ID: 27394119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite ion-size effects dominate the interaction between charged colloidal particles at an oil-water interface.
    Masschaele K; Park BJ; Furst EM; Fransaer J; Vermant J
    Phys Rev Lett; 2010 Jul; 105(4):048303. PubMed ID: 20867891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization effects of dielectric nanoparticles in aqueous charge-asymmetric electrolytes.
    Guerrero GarcĂ­a GI; Olvera de la Cruz M
    J Phys Chem B; 2014 Jul; 118(29):8854-62. PubMed ID: 24953671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poisson-Boltzmann model of electrolytes containing uniformly charged spherical nanoparticles.
    Bohinc K; Volpe Bossa G; Gavryushov S; May S
    J Chem Phys; 2016 Dec; 145(23):234901. PubMed ID: 27984866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forces acting on dielectric colloidal spheres at a water/nonpolar-fluid interface in an external electric field. 1. Uncharged particles.
    Danov KD; Kralchevsky PA
    J Colloid Interface Sci; 2013 Sep; 405():278-90. PubMed ID: 23768629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical consideration on preparing silver particle films by adsorbing nanoparticles from bulk colloids to an air-water interface.
    Hu JW; Han GB; Ren B; Sun SG; Tian ZQ
    Langmuir; 2004 Sep; 20(20):8831-8. PubMed ID: 15379514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloid-oil-water-interface interactions in the presence of multiple salts: charge regulation and dynamics.
    Everts JC; Samin S; Elbers NA; van der Hoeven JES; van Blaaderen A; van Roij R
    Phys Chem Chem Phys; 2017 Jun; 19(22):14345-14357. PubMed ID: 28537607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric forces induced by a charged colloid particle attached to the water-nonpolar fluid interface.
    Danov KD; Kralchevsky PA
    J Colloid Interface Sci; 2006 Jun; 298(1):213-31. PubMed ID: 16413564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric-field-induced capillary attraction between like-charged particles at liquid interfaces.
    Nikolaides MG; Bausch AR; Hsu MF; Dinsmore AD; Brenner MP; Gay C; Weitz DA
    Nature; 2002 Nov; 420(6913):299-301. PubMed ID: 12447435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Pressure of Charged Colloids at the Air/Water Interface.
    Karnieli A; Markovich T; Andelman D
    Langmuir; 2018 Nov; 34(44):13322-13332. PubMed ID: 30266068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle-interface interaction across a nonpolar medium in relation to the production of particle-stabilized emulsions.
    Danov KD; Kralchevsky PA; Ananthapadmanabhan KP; Lips A
    Langmuir; 2006 Jan; 22(1):106-15. PubMed ID: 16378408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rates of ionic reactions with charged nanoparticles in aqueous media.
    Duval JF; van Leeuwen HP
    J Phys Chem A; 2012 Jun; 116(25):6443-51. PubMed ID: 22074411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of an Additive-Free Particle Spreading Method on Interactions between Charged Colloidal Particles at an Oil/Water Interface.
    Gao P; Yi Z; Xing X; Ngai T; Jin F
    Langmuir; 2016 May; 32(19):4909-16. PubMed ID: 27108987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion partitioning at the oil-water interface as a source of tunable electrostatic effects in emulsions with colloids.
    Leunissen ME; Zwanikken J; van Roij R; Chaikin PM; van Blaaderen A
    Phys Chem Chem Phys; 2007 Dec; 9(48):6405-14. PubMed ID: 18060171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrodipping force acting on solid particles at a fluid interface.
    Danov KD; Kralchevsky PA; Boneva MP
    Langmuir; 2004 Jul; 20(15):6139-51. PubMed ID: 15248696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entrapment of charged, nonwetting colloids near oil-water interfaces.
    Oettel M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041403. PubMed ID: 17994984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.