These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27049438)

  • 1. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results.
    Grabarek D; Walczak E; Andruniów T
    J Chem Theory Comput; 2016 May; 12(5):2346-56. PubMed ID: 27049438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometries and Vertical Excitation Energies in Retinal Analogues Resolved at the CASPT2 Level of Theory: Critical Assessment of the Performance of CASSCF, CC2, and DFT Methods.
    Walczak E; Szefczyk B; Andruniów T
    J Chem Theory Comput; 2013 Nov; 9(11):4915-27. PubMed ID: 26583410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the choice of a standard zeroth-order hamiltonian in CASPT2 ansatz optimal in calculations of excitation energies in protonated and unprotonated schiff bases of retinal?
    Wolański Ł; Grabarek D; Andruniów T
    J Comput Chem; 2018 Jul; 39(20):1470-1480. PubMed ID: 29635695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excited-state minima and emission energies of retinal chromophore analogues: Performance of CASSCF and CC2 methods as compared with CASPT2.
    Szefczyk B; Grabarek D; Walczak E; Andruniów T
    J Comput Chem; 2017 Jul; 38(20):1799-1810. PubMed ID: 28512740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking CASPT3 vertical excitation energies.
    Boggio-Pasqua M; Jacquemin D; Loos PF
    J Chem Phys; 2022 Jul; 157(1):014103. PubMed ID: 35803808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation energies of retinal chromophores: critical role of the structural model.
    Valsson O; Angeli C; Filippi C
    Phys Chem Chem Phys; 2012 Aug; 14(31):11015-20. PubMed ID: 22782521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CASSCF and CASPT2 studies on the structures, transition energies, and dipole moments of ground and excited states for azulene.
    Murakami A; Kobayashi T; Goldberg A; Nakamura S
    J Chem Phys; 2004 Jan; 120(3):1245-52. PubMed ID: 15268250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-lying electronic states and their nonradiative deactivation of thieno[3,4-b]pyrazine: an ab initio study.
    Guo X; Cao Z
    J Chem Phys; 2012 Dec; 137(22):224313. PubMed ID: 23249009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The IPEA dilemma in CASPT2.
    Zobel JP; Nogueira JJ; González L
    Chem Sci; 2017 Feb; 8(2):1482-1499. PubMed ID: 28572908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictions of the geometries and fluorescence emission energies of oxyluciferins.
    Yang T; Goddard JD
    J Phys Chem A; 2007 May; 111(20):4489-97. PubMed ID: 17451230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Photophysics and Photochemistry of Phenylalanine, Tyrosine, and Tryptophan: A CASSCF/CASPT2 Study.
    Salmahaminati ; Roca-Sanjuán D
    ACS Omega; 2024 Aug; 9(33):35356-35363. PubMed ID: 39184496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conical intersections in thymine.
    Perun S; Sobolewski AL; Domcke W
    J Phys Chem A; 2006 Dec; 110(49):13238-44. PubMed ID: 17149840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CASSCF and CASPT2 study on the excited states of s-trans-formaldazine.
    Luo C; Duan XM; Liu JY; Li ZS
    J Phys Chem A; 2008 Sep; 112(38):8979-85. PubMed ID: 18759422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structures of low-lying Bu excited states in trans-oligoenes: Pariser-Parr-Pople and ab initio calculations.
    Zhang D; Liu C
    J Chem Phys; 2011 Oct; 135(13):134117. PubMed ID: 21992292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the Excited State Potential Energy Surface of a Retinal Chromophore Model with Multireference and Equation-of-Motion Coupled-Cluster Methods.
    Gozem S; Melaccio F; Lindh R; Krylov AI; Granovsky AA; Angeli C; Olivucci M
    J Chem Theory Comput; 2013 Oct; 9(10):4495-506. PubMed ID: 26589167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electronic spectrum of AgCl2: ab initio benchmark versus density-functional theory calculations on the lowest ligand-field states including spin-orbit effects.
    Ramírez-Solís A; Poteau R; Daudey JP
    J Chem Phys; 2006 Jan; 124(3):034307. PubMed ID: 16438583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarks for Electronically Excited States with CASSCF Methods.
    Helmich-Paris B
    J Chem Theory Comput; 2019 Jul; 15(7):4170-4179. PubMed ID: 31136706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the performance of density functional theory for the electronic structure of metal-salens: the d6-metals.
    Takatani T; Sears JS; Sherrill CD
    J Phys Chem A; 2009 Aug; 113(32):9231-6. PubMed ID: 19621915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio study on the spectroscopy of CuCl2. II. Benchmark calculations on the X2Pi g-C2Deltag and X2Pi g-D2Deltag transitions.
    Ramírez-Solís A; Daudey JP
    J Chem Phys; 2005 Jan; 122(1):14315. PubMed ID: 15638667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the Performances of CASPT2 and NEVPT2 for Vertical Excitation Energies.
    Sarkar R; Loos PF; Boggio-Pasqua M; Jacquemin D
    J Chem Theory Comput; 2022 Apr; 18(4):2418-2436. PubMed ID: 35333060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.