These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 27049528)
1. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Brushes as Peptide/Protein Microarray Substrate for Improving Protein Binding and Functionality. Lei Z; Gao J; Liu X; Liu D; Wang Z ACS Appl Mater Interfaces; 2016 Apr; 8(16):10174-82. PubMed ID: 27049528 [TBL] [Abstract][Full Text] [Related]
2. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R; Kauffmann E; Ehrat M; Klok HA Biomacromolecules; 2010 Dec; 11(12):3467-79. PubMed ID: 21090572 [TBL] [Abstract][Full Text] [Related]
3. Highly sensitive poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] brush-based flow-through microarray immunoassay device. Liu Y; Wang W; Hu W; Lu Z; Zhou X; Li CM Biomed Microdevices; 2011 Aug; 13(4):769-77. PubMed ID: 21547537 [TBL] [Abstract][Full Text] [Related]
4. Development of a peptide microarray-based metal-enhanced fluorescence assay for ultrasensitive detection of multiple matrix metalloproteinase activities by using a gold nanorod-polymer substrate. Jian M; Sun X; Zhang H; Li X; Li S; Wang Z Biosens Bioelectron; 2024 Feb; 246():115871. PubMed ID: 38035516 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Matrix Metalloproteinase Inhibition by Peptide Microarray-Based Fluorescence Assay on Polymer Brush Substrate and in Vivo Assessment. Lei Z; Chen H; Zhang H; Wang Y; Meng X; Wang Z ACS Appl Mater Interfaces; 2017 Dec; 9(50):44241-44250. PubMed ID: 29190077 [TBL] [Abstract][Full Text] [Related]
6. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides. Wu S; Du W; Duan Y; Zhang D; Liu Y; Wu B; Zou X; Ouyang H; Gao C Acta Biomater; 2018 Jul; 75():75-92. PubMed ID: 29857130 [TBL] [Abstract][Full Text] [Related]
7. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R; Klok HA Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007 [TBL] [Abstract][Full Text] [Related]
8. Competitive Immunoassays Using Antigen Microarrays. Zhang Z; Hu W; Zhang Q; Li P; Li C Methods Mol Biol; 2016; 1368():237-47. PubMed ID: 26614080 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of enzymes on 2-hydroxyethyl methacrylate and glycidyl methacrylate copolymer brushes. Ren T; Mao Z; Moya SE; Gao C Chem Asian J; 2014 Aug; 9(8):2132-9. PubMed ID: 24962678 [TBL] [Abstract][Full Text] [Related]
10. Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces. Yu L; Shi Z; Gao L; Li C J Biomed Mater Res A; 2015 Sep; 103(9):2987-97. PubMed ID: 25711883 [TBL] [Abstract][Full Text] [Related]
11. Immobilization and stabilization of papain on poly(hydroxyethyl methacrylate-ethylenglycol dimethacrylate) beads grafted with epoxy functional polymer chains via surface-initiated-atom transfer radical polymerization (SI-ATRP). Bayramoglu G; Senkal BF; Yilmaz M; Arica MY Bioresour Technol; 2011 Nov; 102(21):9833-7. PubMed ID: 21908189 [TBL] [Abstract][Full Text] [Related]
12. New 3-D microarray platform based on macroporous polymer monoliths. Rober M; Walter J; Vlakh E; Stahl F; Kasper C; Tennikova T Anal Chim Acta; 2009 Jun; 644(1-2):95-103. PubMed ID: 19463569 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of carbohydrate microarrays on a poly(2-hydroxyethyl methacrylate)-based photoactive substrate. Sundhoro M; Wang H; Boiko ST; Chen X; Jayawardena HS; Park J; Yan M Org Biomol Chem; 2016 Jan; 14(3):1124-30. PubMed ID: 26646384 [TBL] [Abstract][Full Text] [Related]
15. [Construction of controllable polyethylene glycol bioactive coating with hemocompatibility from the surface of modified glass substrate]. Wei Y; Zhang J; Zhang Y; Feng X; Yang X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):260-266. PubMed ID: 31016943 [TBL] [Abstract][Full Text] [Related]
16. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity. Wei Y; Zhang J; Feng X; Liu D J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389 [TBL] [Abstract][Full Text] [Related]
17. Poly (hydroxyethyl methacrylate-glycidyl methacrylate) films modified with different functional groups: In vitro interactions with platelets and rat stem cells. Bayramoglu G; Bitirim V; Tunali Y; Arica MY; Akcali KC Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):801-10. PubMed ID: 25427490 [TBL] [Abstract][Full Text] [Related]
18. Effects of Grafting Density and Film Thickness on the Adhesion of Staphylococcus epidermidis to Poly(2-hydroxy ethyl methacrylate) and Poly(poly(ethylene glycol)methacrylate) Brushes. Ibanescu SA; Nowakowska J; Khanna N; Landmann R; Klok HA Macromol Biosci; 2016 May; 16(5):676-85. PubMed ID: 26757483 [TBL] [Abstract][Full Text] [Related]
19. In Situ Crosslinking of Nanoparticles in Polymerization-Induced Self-Assembly via ARGET ATRP of Glycidyl Methacrylate. Wang J; Wu Z; Wang G; Matyjaszewski K Macromol Rapid Commun; 2019 Jan; 40(2):e1800332. PubMed ID: 29947063 [TBL] [Abstract][Full Text] [Related]