These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27049633)

  • 21. Advancements in fractal plasmonics: structures, optical properties, and applications.
    Wallace GQ; Lagugné-Labarthet F
    Analyst; 2018 Dec; 144(1):13-30. PubMed ID: 30403204
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors.
    Lee Y; Lee J; Lee TK; Park J; Ha M; Kwak SK; Ko H
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26421-9. PubMed ID: 26575302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy.
    Lee J; Zhang Q; Park S; Choe A; Fan Z; Ko H
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):634-42. PubMed ID: 26684078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel application of plasmonics: plasmon-driven surface-catalyzed reactions.
    Sun M; Xu H
    Small; 2012 Sep; 8(18):2777-86. PubMed ID: 22777813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering.
    Roelli P; Galland C; Piro N; Kippenberg TJ
    Nat Nanotechnol; 2016 Feb; 11(2):164-9. PubMed ID: 26595330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Turning on resonant SERRS using the chromophore-plasmon coupling created by host-guest complexation at a plasmonic nanoarray.
    Witlicki EH; Andersen SS; Hansen SW; Jeppesen JO; Wong EW; Jensen L; Flood AH
    J Am Chem Soc; 2010 May; 132(17):6099-107. PubMed ID: 20387841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active quantum plasmonics.
    Marinica DC; Zapata M; Nordlander P; Kazansky AK; M Echenique P; Aizpurua J; Borisov AG
    Sci Adv; 2015 Dec; 1(11):e1501095. PubMed ID: 26824066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Plasmon-Phonon Coupling.
    Cui Y; Lauchner A; Manjavacas A; Garcı A de Abajo FJ; Halas NJ; Nordlander P
    Nano Lett; 2016 Oct; 16(10):6390-6395. PubMed ID: 27668447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single molecule analysis by surfaced-enhanced Raman scattering.
    Pieczonka NP; Aroca RF
    Chem Soc Rev; 2008 May; 37(5):946-54. PubMed ID: 18443680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial Plasmonic Molecules and Their Interaction with Real Molecules.
    Haran G; Chuntonov L
    Chem Rev; 2018 Jun; 118(11):5539-5580. PubMed ID: 29781601
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amorphous Materials for Enhanced Localized Surface Plasmon Resonances.
    Zhu C; Xu Q
    Chem Asian J; 2018 Apr; 13(7):730-739. PubMed ID: 29349866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pushing the high-energy limit of plasmonics.
    Bisio F; Proietti Zaccaria R; Moroni R; Maidecchi G; Alabastri A; Gonella G; Giglia A; Andolfi L; Nannarone S; Mattera L; Canepa M
    ACS Nano; 2014 Sep; 8(9):9239-47. PubMed ID: 25181497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface-enhanced Raman spectroscopy: concepts and chemical applications.
    Schlücker S
    Angew Chem Int Ed Engl; 2014 May; 53(19):4756-95. PubMed ID: 24711218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multicolor Electrochromic Devices Based on Molecular Plasmonics.
    Stec GJ; Lauchner A; Cui Y; Nordlander P; Halas NJ
    ACS Nano; 2017 Mar; 11(3):3254-3261. PubMed ID: 28225586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Optomechanics Induced Hybrid Properties in Soft Materials Filled Plasmonic Nanocavities.
    Patra B; Kafle B; Habteyes TG
    Nano Lett; 2023 Jun; 23(11):5108-5115. PubMed ID: 37225673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonics-Nanofluidics Hydrid Metamaterial: An Ultrasensitive Platform for Infrared Absorption Spectroscopy and Quantitative Measurement of Molecules.
    Le THH; Tanaka T
    ACS Nano; 2017 Oct; 11(10):9780-9788. PubMed ID: 28945355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonic phenomena in molecular junctions: principles and applications.
    Wang M; Wang T; Ojambati OS; Duffin TJ; Kang K; Lee T; Scheer E; Xiang D; Nijhuis CA
    Nat Rev Chem; 2022 Oct; 6(10):681-704. PubMed ID: 37117494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Between plasmonics and surface-enhanced resonant Raman spectroscopy: toward single-molecule strong coupling at a hotspot.
    Itoh T; Yamamoto YS
    Nanoscale; 2021 Jan; 13(3):1566-1580. PubMed ID: 33438716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.