These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 27049633)
21. Advancements in fractal plasmonics: structures, optical properties, and applications. Wallace GQ; Lagugné-Labarthet F Analyst; 2018 Dec; 144(1):13-30. PubMed ID: 30403204 [TBL] [Abstract][Full Text] [Related]
22. Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors. Lee Y; Lee J; Lee TK; Park J; Ha M; Kwak SK; Ko H ACS Appl Mater Interfaces; 2015 Dec; 7(48):26421-9. PubMed ID: 26575302 [TBL] [Abstract][Full Text] [Related]
23. Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy. Lee J; Zhang Q; Park S; Choe A; Fan Z; Ko H ACS Appl Mater Interfaces; 2016 Jan; 8(1):634-42. PubMed ID: 26684078 [TBL] [Abstract][Full Text] [Related]
24. A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Sun M; Xu H Small; 2012 Sep; 8(18):2777-86. PubMed ID: 22777813 [TBL] [Abstract][Full Text] [Related]
25. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Roelli P; Galland C; Piro N; Kippenberg TJ Nat Nanotechnol; 2016 Feb; 11(2):164-9. PubMed ID: 26595330 [TBL] [Abstract][Full Text] [Related]
26. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
27. Turning on resonant SERRS using the chromophore-plasmon coupling created by host-guest complexation at a plasmonic nanoarray. Witlicki EH; Andersen SS; Hansen SW; Jeppesen JO; Wong EW; Jensen L; Flood AH J Am Chem Soc; 2010 May; 132(17):6099-107. PubMed ID: 20387841 [TBL] [Abstract][Full Text] [Related]
28. Active quantum plasmonics. Marinica DC; Zapata M; Nordlander P; Kazansky AK; M Echenique P; Aizpurua J; Borisov AG Sci Adv; 2015 Dec; 1(11):e1501095. PubMed ID: 26824066 [TBL] [Abstract][Full Text] [Related]
29. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering. Payton JL; Morton SM; Moore JE; Jensen L Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411 [TBL] [Abstract][Full Text] [Related]
30. Molecular Plasmon-Phonon Coupling. Cui Y; Lauchner A; Manjavacas A; Garcı A de Abajo FJ; Halas NJ; Nordlander P Nano Lett; 2016 Oct; 16(10):6390-6395. PubMed ID: 27668447 [TBL] [Abstract][Full Text] [Related]
35. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Schlücker S Angew Chem Int Ed Engl; 2014 May; 53(19):4756-95. PubMed ID: 24711218 [TBL] [Abstract][Full Text] [Related]
36. Multicolor Electrochromic Devices Based on Molecular Plasmonics. Stec GJ; Lauchner A; Cui Y; Nordlander P; Halas NJ ACS Nano; 2017 Mar; 11(3):3254-3261. PubMed ID: 28225586 [TBL] [Abstract][Full Text] [Related]
38. Plasmonics-Nanofluidics Hydrid Metamaterial: An Ultrasensitive Platform for Infrared Absorption Spectroscopy and Quantitative Measurement of Molecules. Le THH; Tanaka T ACS Nano; 2017 Oct; 11(10):9780-9788. PubMed ID: 28945355 [TBL] [Abstract][Full Text] [Related]
39. Plasmonic phenomena in molecular junctions: principles and applications. Wang M; Wang T; Ojambati OS; Duffin TJ; Kang K; Lee T; Scheer E; Xiang D; Nijhuis CA Nat Rev Chem; 2022 Oct; 6(10):681-704. PubMed ID: 37117494 [TBL] [Abstract][Full Text] [Related]
40. Between plasmonics and surface-enhanced resonant Raman spectroscopy: toward single-molecule strong coupling at a hotspot. Itoh T; Yamamoto YS Nanoscale; 2021 Jan; 13(3):1566-1580. PubMed ID: 33438716 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]