These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27049633)

  • 41. How To Identify Plasmons from the Optical Response of Nanostructures.
    Zhang R; Bursi L; Cox JD; Cui Y; Krauter CM; Alabastri A; Manjavacas A; Calzolari A; Corni S; Molinari E; Carter EA; García de Abajo FJ; Zhang H; Nordlander P
    ACS Nano; 2017 Jul; 11(7):7321-7335. PubMed ID: 28651057
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Magnetoplasmon Resonances in Semiconductor Nanocrystals: Potential for a New Information Technology Platform.
    Yin P; Radovanovic PV
    ChemSusChem; 2020 Sep; 13(18):4885-4893. PubMed ID: 32681689
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Colloidal design of plasmonic sensors based on surface enhanced Raman scattering.
    Hamon C; Liz-Marzán LM
    J Colloid Interface Sci; 2018 Feb; 512():834-843. PubMed ID: 29121611
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions.
    El-Khoury PZ; Johnson GE; Novikova IV; Gong Y; Joly AG; Evans JE; Zamkov M; Laskin J; Hess WP
    Faraday Discuss; 2015; 184():339-57. PubMed ID: 26406784
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hybrid cavity-antenna architecture for strong and tunable sideband-selective molecular Raman scattering enhancement.
    Shlesinger I; Vandersmissen J; Oksenberg E; Verhagen E; Koenderink AF
    Sci Adv; 2023 Dec; 9(51):eadj4637. PubMed ID: 38117880
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer.
    Lin L; Zapata M; Xiong M; Liu Z; Wang S; Xu H; Borisov AG; Gu H; Nordlander P; Aizpurua J; Ye J
    Nano Lett; 2015 Oct; 15(10):6419-28. PubMed ID: 26375710
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles.
    Peng HI; Miller BL
    Analyst; 2011 Feb; 136(3):436-47. PubMed ID: 21049107
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.
    Long R; Li Y; Song L; Xiong Y
    Small; 2015 Aug; 11(32):3873-89. PubMed ID: 26097101
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives.
    Aslan K; Lakowicz JR; Geddes CD
    Curr Opin Chem Biol; 2005 Oct; 9(5):538-44. PubMed ID: 16129649
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis.
    Vo-Dinh T; Yan F; Stokes DL
    Methods Mol Biol; 2005; 300():255-83. PubMed ID: 15657488
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models.
    Register JK; Fales AM; Wang HN; Norton SJ; Cho EH; Boico A; Pradhan S; Kim J; Schroeder T; Wisniewski NA; Klitzman B; Vo-Dinh T
    Anal Bioanal Chem; 2015 Nov; 407(27):8215-24. PubMed ID: 26337748
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys.
    Amendola V; Scaramuzza S; Agnoli S; Polizzi S; Meneghetti M
    Nanoscale; 2014; 6(3):1423-33. PubMed ID: 24309909
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single nanoparticle plasmonics.
    Ringe E; Sharma B; Henry AI; Marks LD; Van Duyne RP
    Phys Chem Chem Phys; 2013 Mar; 15(12):4110-29. PubMed ID: 23420338
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanosensors based on viologen functionalized silver nanoparticles: few molecules surface-enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons in interparticle hot spots.
    Guerrini L; Garcia-Ramos JV; Domingo C; Sanchez-Cortes S
    Anal Chem; 2009 Feb; 81(4):1418-25. PubMed ID: 19215145
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sum-Frequency Generation Spectroscopy of Plasmonic Nanomaterials: A Review.
    Humbert C; Noblet T; Dalstein L; Busson B; Barbillon G
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30871058
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrafast surface-enhanced Raman spectroscopy.
    Keller EL; Brandt NC; Cassabaum AA; Frontiera RR
    Analyst; 2015 Aug; 140(15):4922-31. PubMed ID: 26016991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.