BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 27049797)

  • 1. Multiantigenic subunitary vaccines against tuberculosis in clinical trials: Where do we stand and where do we need to go?
    Guapillo C; Hernández-Pando R; Flores-Valdez MA
    Hum Vaccin Immunother; 2016 May; 12(5):1193-5. PubMed ID: 27049797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fused Mycobacterium tuberculosis multi-stage immunogens with an Fc-delivery system as a promising approach for the development of a tuberculosis vaccine.
    Mosavat A; Soleimanpour S; Farsiani H; Sadeghian H; Ghazvini K; Sankian M; Jamehdar SA; Rezaee SA
    Infect Genet Evol; 2016 Apr; 39():163-172. PubMed ID: 26835592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel tuberculosis vaccines on the horizon.
    Parida SK; Kaufmann SH
    Curr Opin Immunol; 2010 Jun; 22(3):374-84. PubMed ID: 20471231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospects for a novel vaccine against tuberculosis.
    Dietrich J; Weldingh K; Andersen P
    Vet Microbiol; 2006 Feb; 112(2-4):163-9. PubMed ID: 16325357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential proteomics approach to identify putative protective antigens of Mycobacterium tuberculosis presented during early stages of macrophage infection and their evaluation as DNA vaccines.
    Sharma S; Rajmani RS; Kumar A; Bhaskar A; Singh A; Manivel V; Tyagi AK; Rao KV
    Indian J Exp Biol; 2015 Jul; 53(7):429-39. PubMed ID: 26245027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunogenicity and protective efficacy of a fusion protein vaccine consisting of antigen Ag85B and HspX against Mycobacterium tuberculosis infection in mice.
    Li Q; Yu H; Zhang Y; Wang B; Jiang W; Da Z; Xian Q; Wang Y; Liu X; Zhu B
    Scand J Immunol; 2011 Jun; 73(6):568-76. PubMed ID: 21323695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New hope for tuberculosis vaccines.
    Olesen OF; Abdullah F; Coppens R; Gardner PJ; Ginsberg AM; Hanekom WA; Laang H; Lewinsohn DM; Loots G; Schmidt A; Vekemans J; Voss GH
    Lancet Infect Dis; 2019 Jul; 19(7):687-688. PubMed ID: 31250810
    [No Abstract]   [Full Text] [Related]  

  • 8. Strategies for developing tuberculosis vaccines: emerging approaches.
    Mollica A; Stefanucci A; Costante R
    Curr Drug Targets; 2013 Aug; 14(9):938-51. PubMed ID: 23469877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitope promiscuity and population coverage of Mycobacterium tuberculosis protein antigens in current subunit vaccines under development.
    Ong E; He Y; Yang Z
    Infect Genet Evol; 2020 Jun; 80():104186. PubMed ID: 31923726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting BCG with MVA85A: the first candidate subunit vaccine for tuberculosis in clinical trials.
    McShane H; Pathan AA; Sander CR; Goonetilleke NP; Fletcher HA; Hill AV
    Tuberculosis (Edinb); 2005; 85(1-2):47-52. PubMed ID: 15687027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A PE_PGRS33 protein of Mycobacterium tuberculosis: an ideal target for future tuberculosis vaccine design.
    Gastelum-Aviña P; Velazquez C; Espitia C; Lares-Villa F; Garibay-Escobar A
    Expert Rev Vaccines; 2015 May; 14(5):699-711. PubMed ID: 25693607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mucosal delivery of antigen-coated nanoparticles to lungs confers protective immunity against tuberculosis infection in mice.
    Stylianou E; Diogo GR; Pepponi I; van Dolleweerd C; Arias MA; Locht C; Rider CC; Sibley L; Cutting SM; Loxley A; Ma JK; Reljic R
    Eur J Immunol; 2014 Feb; 44(2):440-9. PubMed ID: 24214530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic Long Peptide Derived from Mycobacterium tuberculosis Latency Antigen Rv1733c Protects against Tuberculosis.
    Coppola M; van den Eeden SJ; Wilson L; Franken KL; Ottenhoff TH; Geluk A
    Clin Vaccine Immunol; 2015 Sep; 22(9):1060-9. PubMed ID: 26202436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antigen 85 complex as a powerful Mycobacterium tuberculosis immunogene: Biology, immune-pathogenicity, applications in diagnosis, and vaccine design.
    Karbalaei Zadeh Babaki M; Soleimanpour S; Rezaee SA
    Microb Pathog; 2017 Nov; 112():20-29. PubMed ID: 28942172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vaccines for tuberculosis: novel concepts and recent progress.
    Doherty TM; Andersen P
    Clin Microbiol Rev; 2005 Oct; 18(4):687-702. PubMed ID: 16223953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of epitope recognition pattern in Ag85B and ESAT-6 has a profound influence on vaccine-induced protection against Mycobacterium tuberculosis.
    Bennekov T; Dietrich J; Rosenkrands I; Stryhn A; Doherty TM; Andersen P
    Eur J Immunol; 2006 Dec; 36(12):3346-55. PubMed ID: 17109467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuberculosis subunit vaccine design: the conflict of antigenicity and immunogenicity.
    Sable SB; Kalra M; Verma I; Khuller GK
    Clin Immunol; 2007 Mar; 122(3):239-51. PubMed ID: 17208519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future vaccination strategies against tuberculosis: thinking outside the box.
    Kaufmann SH
    Immunity; 2010 Oct; 33(4):567-77. PubMed ID: 21029966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation in gene encoding Mycobacterium tuberculosis antigen Rv2660 and a high predicted population coverage of H56 multistage vaccine in South Africa.
    Perez-Martinez AP; Ong E; Zhang L; Marrs CF; He Y; Yang Z
    Infect Genet Evol; 2017 Nov; 55():244-250. PubMed ID: 28941991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Genomics and gene engineering: rationale to the development of new means of tuberculosis control].
    Kariagina AS; Naroditskiĭ BS; Apt AS; Gintsburg AL
    Zh Mikrobiol Epidemiol Immunobiol; 2004; (4):94-101. PubMed ID: 15481937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.