BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

720 related articles for article (PubMed ID: 27049916)

  • 1. Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma.
    Bougnaud S; Golebiewska A; Oudin A; Keunen O; Harter PN; Mäder L; Azuaje F; Fritah S; Stieber D; Kaoma T; Vallar L; Brons NH; Daubon T; Miletic H; Sundstrøm T; Herold-Mende C; Mittelbronn M; Bjerkvig R; Niclou SP
    Oncotarget; 2016 May; 7(22):31955-71. PubMed ID: 27049916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumour-associated glial host cells display a stem-like phenotype with a distinct gene expression profile and promote growth of GBM xenografts.
    Leiss L; Mutlu E; Øyan A; Yan T; Tsinkalovsky O; Sleire L; Petersen K; Rahman MA; Johannessen M; Mitra SS; Jacobsen HK; Talasila KM; Miletic H; Jonassen I; Li X; Brons NH; Kalland KH; Wang J; Enger PØ
    BMC Cancer; 2017 Feb; 17(1):108. PubMed ID: 28173797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of angiogenesis related factors in glioblastoma, peritumoral tissue and their derived cancer stem cells.
    D'Alessio A; Proietti G; Lama G; Biamonte F; Lauriola L; Moscato U; Vescovi A; Mangiola A; Angelucci C; Sica G
    Oncotarget; 2016 Nov; 7(48):78541-78556. PubMed ID: 27705944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation.
    Xia S; Lal B; Tung B; Wang S; Goodwin CR; Laterra J
    Neuro Oncol; 2016 Apr; 18(4):507-17. PubMed ID: 26320116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glioblastoma-associated stromal cells (GASCs) from histologically normal surgical margins have a myofibroblast phenotype and angiogenic properties.
    Clavreul A; Guette C; Faguer R; Tétaud C; Boissard A; Lemaire L; Rousseau A; Avril T; Henry C; Coqueret O; Menei P
    J Pathol; 2014 May; 233(1):74-88. PubMed ID: 24481573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth.
    Zhu Y; Zhao K; Prinz A; Keyvani K; Lambertz N; Kreitschmann-Andermahr I; Lei T; Sure U
    Neuro Oncol; 2016 Apr; 18(4):538-48. PubMed ID: 26254477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bidirectional crosstalk between glioblastoma and brain endothelial cells potentiates the angiogenic and proliferative signaling of sphingosine-1-phosphate in the glioblastoma microenvironment.
    Abdel Hadi L; Anelli V; Guarnaccia L; Navone S; Beretta M; Moccia F; Tringali C; Urechie V; Campanella R; Marfia G; Riboni L
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Oct; 1863(10):1179-1192. PubMed ID: 30056170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study.
    Yadav VN; Zamler D; Baker GJ; Kadiyala P; Erdreich-Epstein A; DeCarvalho AC; Mikkelsen T; Castro MG; Lowenstein PR
    Oncotarget; 2016 Dec; 7(50):83701-83719. PubMed ID: 27863376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1.
    Bronisz A; Wang Y; Nowicki MO; Peruzzi P; Ansari K; Ogawa D; Balaj L; De Rienzo G; Mineo M; Nakano I; Ostrowski MC; Hochberg F; Weissleder R; Lawler SE; Chiocca EA; Godlewski J
    Cancer Res; 2014 Feb; 74(3):738-750. PubMed ID: 24310399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profilin-1 phosphorylation directs angiocrine expression and glioblastoma progression through HIF-1α accumulation.
    Fan Y; Potdar AA; Gong Y; Eswarappa SM; Donnola S; Lathia JD; Hambardzumyan D; Rich JN; Fox PL
    Nat Cell Biol; 2014 May; 16(5):445-56. PubMed ID: 24747440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development.
    Kucharzewska P; Christianson HC; Welch JE; Svensson KJ; Fredlund E; Ringnér M; Mörgelin M; Bourseau-Guilmain E; Bengzon J; Belting M
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7312-7. PubMed ID: 23589885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glioblastoma Exhibits Inter-Individual Heterogeneity of TSPO and LAT1 Expression in Neoplastic and Parenchymal Cells.
    Cai L; Kirchleitner SV; Zhao D; Li M; Tonn JC; Glass R; Kälin RE
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-135b suppresses tumorigenesis in glioblastoma stem-like cells impairing proliferation, migration and self-renewal.
    Lulli V; Buccarelli M; Martini M; Signore M; Biffoni M; Giannetti S; Morgante L; Marziali G; Ilari R; Pagliuca A; Larocca LM; De Maria R; Pallini R; Ricci-Vitiani L
    Oncotarget; 2015 Nov; 6(35):37241-56. PubMed ID: 26437223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of two glioblastoma-associated stromal cell subtypes with different carcinogenic properties in histologically normal surgical margins.
    Clavreul A; Etcheverry A; Tétaud C; Rousseau A; Avril T; Henry C; Mosser J; Menei P
    J Neurooncol; 2015 Mar; 122(1):1-10. PubMed ID: 25503303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment.
    Hoelzinger DB; Demuth T; Berens ME
    J Natl Cancer Inst; 2007 Nov; 99(21):1583-93. PubMed ID: 17971532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blocking distinct interactions between Glioblastoma cells and their tissue microenvironment: A novel multi-targeted therapeutic approach.
    Mettang M; Meyer-Pannwitt V; Karpel-Massler G; Zhou S; Carragher NO; Föhr KJ; Baumann B; Nonnenmacher L; Enzenmüller S; Dahlhaus M; Siegelin MD; Stroh S; Mertens D; Fischer-Posovszky P; Schneider EM; Halatsch ME; Debatin KM; Westhoff MA
    Sci Rep; 2018 Apr; 8(1):5527. PubMed ID: 29615749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells.
    Ricci-Vitiani L; Pallini R; Biffoni M; Todaro M; Invernici G; Cenci T; Maira G; Parati EA; Stassi G; Larocca LM; De Maria R
    Nature; 2010 Dec; 468(7325):824-8. PubMed ID: 21102434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.
    Stangeland B; Mughal AA; Grieg Z; Sandberg CJ; Joel M; Nygård S; Meling T; Murrell W; Vik Mo EO; Langmoen IA
    Oncotarget; 2015 Sep; 6(28):26192-215. PubMed ID: 26295306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biologically Active TNIIIA2 Region in Tenascin-C Molecule: A Major Contributor to Elicit Aggressive Malignant Phenotypes From Tumors/Tumor Stroma.
    Iyoda T; Fujita M; Fukai F
    Front Immunol; 2020; 11():610096. PubMed ID: 33362799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular adenosine promotes cell migration/invasion of Glioblastoma Stem-like Cells through A
    Torres Á; Erices JI; Sanchez F; Ehrenfeld P; Turchi L; Virolle T; Uribe D; Niechi I; Spichiger C; Rocha JD; Ramirez M; Salazar-Onfray F; San Martín R; Quezada C
    Cancer Lett; 2019 Apr; 446():112-122. PubMed ID: 30660649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.