BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 27050099)

  • 1. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells.
    Lee JK; Phillips JW; Smith BA; Park JW; Stoyanova T; McCaffrey EF; Baertsch R; Sokolov A; Meyerowitz JG; Mathis C; Cheng D; Stuart JM; Shokat KM; Gustafson WC; Huang J; Witte ON
    Cancer Cell; 2016 Apr; 29(4):536-547. PubMed ID: 27050099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers.
    Beltran H; Oromendia C; Danila DC; Montgomery B; Hoimes C; Szmulewitz RZ; Vaishampayan U; Armstrong AJ; Stein M; Pinski J; Mosquera JM; Sailer V; Bareja R; Romanel A; Gumpeni N; Sboner A; Dardenne E; Puca L; Prandi D; Rubin MA; Scher HI; Rickman DS; Demichelis F; Nanus DM; Ballman KV; Tagawa ST
    Clin Cancer Res; 2019 Jan; 25(1):43-51. PubMed ID: 30232224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the MYCN-PARP-DNA Damage Response Pathway in Neuroendocrine Prostate Cancer.
    Zhang W; Liu B; Wu W; Li L; Broom BM; Basourakos SP; Korentzelos D; Luan Y; Wang J; Yang G; Park S; Azad AK; Cao X; Kim J; Corn PG; Logothetis CJ; Aparicio AM; Chinnaiyan AM; Navone N; Troncoso P; Thompson TC
    Clin Cancer Res; 2018 Feb; 24(3):696-707. PubMed ID: 29138344
    [No Abstract]   [Full Text] [Related]  

  • 4. Molecular events in neuroendocrine prostate cancer development.
    Wang Y; Wang Y; Ci X; Choi SYC; Crea F; Lin D; Wang Y
    Nat Rev Urol; 2021 Oct; 18(10):581-596. PubMed ID: 34290447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurokinin-1 receptor drives PKCɑ-AURKA/N-Myc signaling to facilitate the neuroendocrine progression of prostate cancer.
    Zhang XW; Li JY; Li L; Hu WQ; Tao Y; Gao WY; Ye ZN; Jia HY; Wang JN; Miao XK; Yang WL; Wang R; Mou LY
    Cell Death Dis; 2023 Jun; 14(6):384. PubMed ID: 37385990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Receptor-interacting protein kinase 2 (RIPK2) stabilizes c-Myc and is a therapeutic target in prostate cancer metastasis.
    Yan Y; Zhou B; Qian C; Vasquez A; Kamra M; Chatterjee A; Lee YJ; Yuan X; Ellis L; Di Vizio D; Posadas EM; Kyprianou N; Knudsen BS; Shah K; Murali R; Gertych A; You S; Freeman MR; Yang W
    Nat Commun; 2022 Feb; 13(1):669. PubMed ID: 35115556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting DNA methylation and B7-H3 in RB1-deficient and neuroendocrine prostate cancer.
    Yamada Y; Venkadakrishnan VB; Mizuno K; Bakht M; Ku SY; Garcia MM; Beltran H
    Sci Transl Med; 2023 Nov; 15(722):eadf6732. PubMed ID: 37967200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZBTB7A as a novel vulnerability in neuroendocrine prostate cancer.
    Bae SY; Bergom HE; Day A; Greene JT; Sychev ZE; Larson G; Corey E; Plymate SR; Freedman TS; Hwang JH; Drake JM
    Front Endocrinol (Lausanne); 2023; 14():1093332. PubMed ID: 37065756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small molecule inhibitors of aurora-a induce proteasomal degradation of N-myc in childhood neuroblastoma.
    Brockmann M; Poon E; Berry T; Carstensen A; Deubzer HE; Rycak L; Jamin Y; Thway K; Robinson SP; Roels F; Witt O; Fischer M; Chesler L; Eilers M
    Cancer Cell; 2013 Jul; 24(1):75-89. PubMed ID: 23792191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stem cells in genetically-engineered mouse models of prostate cancer.
    Shibata M; Shen MM
    Endocr Relat Cancer; 2015 Dec; 22(6):T199-208. PubMed ID: 26341780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunogenomic Landscape of Neuroendocrine Prostate Cancer.
    Bhinder B; Ferguson A; Sigouros M; Uppal M; Elsaeed AG; Bareja R; Alnajar H; Eng KW; Conteduca V; Sboner A; Mosquera JM; Elemento O; Beltran H
    Clin Cancer Res; 2023 Aug; 29(15):2933-2943. PubMed ID: 37223924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ELAVL3/MYCN positive feedback loop provides a therapeutic target for neuroendocrine prostate cancer.
    Ji Y; Zhang W; Shen K; Su R; Liu X; Ma Z; Liu B; Hu C; Xue Y; Xin Z; Yang Y; Li A; Jiang Z; Jing N; Zhu HH; Dong L; Zhu Y; Dong B; Pan J; Wang Q; Xue W
    Nat Commun; 2023 Nov; 14(1):7794. PubMed ID: 38016952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MYC Mediates Large Oncosome-Induced Fibroblast Reprogramming in Prostate Cancer.
    Minciacchi VR; Spinelli C; Reis-Sobreiro M; Cavallini L; You S; Zandian M; Li X; Mishra R; Chiarugi P; Adam RM; Posadas EM; Viglietto G; Freeman MR; Cocucci E; Bhowmick NA; Di Vizio D
    Cancer Res; 2017 May; 77(9):2306-2317. PubMed ID: 28202510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large remodeling of the Myc-induced cell surface proteome in B cells and prostate cells creates new opportunities for immunotherapy.
    Chen W; Mou KY; Solomon P; Aggarwal R; Leung KK; Wells JA
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33483421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Amplifiation of the c-MYC gene in acinar prostate adenocarcinoma. Morphogenic comparisons].
    Khorzhevskii VA; Alymova EV; Kirichenko AK; Gappoev SV; Anzhiganova YV
    Arkh Patol; 2024; 86(3):30-37. PubMed ID: 38881003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interplay between autophagy and ferroptosis presents a novel conceptual therapeutic framework for neuroendocrine prostate cancer.
    Wang Y; Wu N; Li J; Liang J; Zhou D; Cao Q; Li X; Jiang N
    Pharmacol Res; 2024 May; 203():107162. PubMed ID: 38554788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dunning rat prostate adenocarcinomas and alternative splicing reporters: powerful tools to study epithelial plasticity in prostate tumors in vivo.
    Oltean S; Febbo PG; Garcia-Blanco MA
    Clin Exp Metastasis; 2008; 25(6):611-9. PubMed ID: 18523850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADORA2A-driven proline synthesis triggers epigenetic reprogramming in neuroendocrine prostate and lung cancers.
    Jing N; Zhang K; Chen X; Liu K; Wang J; Xiao L; Zhang W; Ma P; Xu P; Cheng C; Wang D; Zhao H; He Y; Ji Z; Xin Z; Sun Y; Zhang Y; Bao W; Gong Y; Fan L; Ji Y; Zhuang G; Wang Q; Dong B; Zhang P; Xue W; Gao WQ; Zhu HH
    J Clin Invest; 2023 Dec; 133(24):. PubMed ID: 38099497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SIRT1 contributes to neuroendocrine differentiation of prostate cancer.
    Ruan L; Wang L; Wang X; He M; Yao X
    Oncotarget; 2018 Jan; 9(2):2002-2016. PubMed ID: 29416748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment-related Neuroendocrine Prostate Carcinoma-Diagnostic and Molecular Correlates.
    Gopalan A
    Adv Anat Pathol; 2024 Mar; 31(2):70-79. PubMed ID: 38223983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.