These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 27050157)
1. A biocatalytic approach to capuramycin analogues by exploiting a substrate permissive N-transacylase CapW. Liu X; Jin Y; Cai W; Green KD; Goswami A; Garneau-Tsodikova S; Nonaka K; Baba S; Funabashi M; Yang Z; Van Lanen SG Org Biomol Chem; 2016 Apr; 14(16):3956-62. PubMed ID: 27050157 [TBL] [Abstract][Full Text] [Related]
2. Functional and kinetic analysis of the phosphotransferase CapP conferring selective self-resistance to capuramycin antibiotics. Yang Z; Funabashi M; Nonaka K; Hosobuchi M; Shibata T; Pahari P; Van Lanen SG J Biol Chem; 2010 Apr; 285(17):12899-905. PubMed ID: 20202936 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of capuramycin and its analogues via a Ferrier-type I reaction and their biological evaluation. Kusaka S; Yamamoto K; Shinohara M; Minato Y; Ichikawa S Bioorg Med Chem; 2022 Nov; 73():117011. PubMed ID: 36191548 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and antimycobacterial activity of capuramycin analogues. Part 1: substitution of the azepan-2-one moiety of capuramycin. Hotoda H; Furukawa M; Daigo M; Murayama K; Kaneko M; Muramatsu Y; Ishii MM; Miyakoshi S; Takatsu T; Inukai M; Kakuta M; Abe T; Harasaki T; Fukuoka T; Utsui Y; Ohya S Bioorg Med Chem Lett; 2003 Sep; 13(17):2829-32. PubMed ID: 14611838 [TBL] [Abstract][Full Text] [Related]
5. In vitro antimicrobial activities of capuramycin analogues against non-tuberculous mycobacteria. Dubuisson T; Bogatcheva E; Krishnan MY; Collins MT; Einck L; Nacy CA; Reddy VM J Antimicrob Chemother; 2010 Dec; 65(12):2590-7. PubMed ID: 20952419 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and antimycobacterial activity of capuramycin analogues. Part 2: acylated derivatives of capuramycin-related compounds. Hotoda H; Daigo M; Furukawa M; Murayama K; Hasegawa CA; Kaneko M; Muramatsu Y; Ishii MM; Miyakoshi S; Takatsu T; Inukai M; Kakuta M; Abe T; Fukuoka T; Utsui Y; Ohya S Bioorg Med Chem Lett; 2003 Sep; 13(17):2833-6. PubMed ID: 14611839 [TBL] [Abstract][Full Text] [Related]
7. Improved synthesis of capuramycin and its analogues. Wang Y; Siricilla S; Aleiwi BA; Kurosu M Chemistry; 2013 Oct; 19(41):13847-58. PubMed ID: 24014478 [TBL] [Abstract][Full Text] [Related]
8. In vitro antimycobacterial activities of capuramycin analogues. Reddy VM; Einck L; Nacy CA Antimicrob Agents Chemother; 2008 Feb; 52(2):719-21. PubMed ID: 18070956 [TBL] [Abstract][Full Text] [Related]
9. Activity of capuramycin analogues against Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium intracellulare in vitro and in vivo. Koga T; Fukuoka T; Doi N; Harasaki T; Inoue H; Hotoda H; Kakuta M; Muramatsu Y; Yamamura N; Hoshi M; Hirota T J Antimicrob Chemother; 2004 Oct; 54(4):755-60. PubMed ID: 15347635 [TBL] [Abstract][Full Text] [Related]
10. Chemical modification of capuramycins to enhance antibacterial activity. Bogatcheva E; Dubuisson T; Protopopova M; Einck L; Nacy CA; Reddy VM J Antimicrob Chemother; 2011 Mar; 66(3):578-87. PubMed ID: 21186194 [TBL] [Abstract][Full Text] [Related]
11. Biosynthetic and Synthetic Strategies for Assembling Capuramycin-Type Antituberculosis Antibiotics. Biecker AL; Liu X; Thorson JS; Yang Z; Van Lanen SG Molecules; 2019 Jan; 24(3):. PubMed ID: 30691073 [No Abstract] [Full Text] [Related]
12. Discovery of a capuramycin analog that kills nonreplicating Mycobacterium tuberculosis and its synergistic effects with translocase I inhibitors. Siricilla S; Mitachi K; Wan B; Franzblau SG; Kurosu M J Antibiot (Tokyo); 2015 Apr; 68(4):271-8. PubMed ID: 25269459 [TBL] [Abstract][Full Text] [Related]
13. Concise synthesis of capuramycin. Kurosu M; Li K; Crick DC Org Lett; 2009 Jun; 11(11):2393-6. PubMed ID: 19405507 [TBL] [Abstract][Full Text] [Related]
14. Studies on novel bacterial translocase I inhibitors, A-500359s. II. Biological activities of A-500359 A, C, D and G. Muramatsu Y; Ishii MM; Inukai M J Antibiot (Tokyo); 2003 Mar; 56(3):253-8. PubMed ID: 12760681 [TBL] [Abstract][Full Text] [Related]
15. The Biosynthesis of Capuramycin-type Antibiotics: IDENTIFICATION OF THE A-102395 BIOSYNTHETIC GENE CLUSTER, MECHANISM OF SELF-RESISTANCE, AND FORMATION OF URIDINE-5'-CARBOXAMIDE. Cai W; Goswami A; Yang Z; Liu X; Green KD; Barnard-Britson S; Baba S; Funabashi M; Nonaka K; Sunkara M; Morris AJ; Spork AP; Ducho C; Garneau-Tsodikova S; Thorson JS; Van Lanen SG J Biol Chem; 2015 May; 290(22):13710-24. PubMed ID: 25855790 [TBL] [Abstract][Full Text] [Related]
16. Mycobacterium tuberculosis is resistant to streptolydigin. Speer A; Rowland JL; Niederweis M Tuberculosis (Edinb); 2013 Jul; 93(4):401-4. PubMed ID: 23591156 [TBL] [Abstract][Full Text] [Related]
17. Further analysis of acyl-CoA-ACP-transacylases of mycobacterium smegmatis. Identification of a long chain alkyl malonyl-CoA-ACP-transacylase. Kervabon A; Masson P; Etemadi AH Biochimie; 1975; 57(6-7):811-24. PubMed ID: 1106774 [TBL] [Abstract][Full Text] [Related]
19. Redesign of substrate specificity and identification of the aminoglycoside binding residues of Eis from Mycobacterium tuberculosis. Jennings BC; Labby KJ; Green KD; Garneau-Tsodikova S Biochemistry; 2013 Jul; 52(30):5125-32. PubMed ID: 23837529 [TBL] [Abstract][Full Text] [Related]
20. On the relation between a stearoyl-specific transacylase from bovine testis membranes and a copurifying acyltransferase. Hollenback D; Glomset JA Biochemistry; 1998 Jan; 37(1):363-76. PubMed ID: 9425058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]