These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27050303)

  • 1. Errors Disrupt Subsequent Early Attentional Processes.
    Van der Borght L; Schevernels H; Burle B; Notebaert W
    PLoS One; 2016; 11(4):e0151843. PubMed ID: 27050303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common mechanisms in error monitoring and action effect monitoring.
    Steinhauser R; Wirth R; Kunde W; Janczyk M; Steinhauser M
    Cogn Affect Behav Neurosci; 2018 Dec; 18(6):1159-1171. PubMed ID: 30069791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Error positivity is related to attentional control of task switching.
    Tanaka H
    Neuroreport; 2009 May; 20(8):820-4. PubMed ID: 19384255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attentional gain and processing capacity limits predict the propensity to neglect unexpected visual stimuli.
    Papera M; Richards A
    Psychophysiology; 2016 May; 53(5):634-49. PubMed ID: 26849023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing capacity in chronic pain patients: a visual event-related potentials study.
    Veldhuijzen DS; Kenemans JL; van Wijck AJ; Olivier B; Kalkman CJ; Volkerts ER
    Pain; 2006 Mar; 121(1-2):60-8. PubMed ID: 16480825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal attention enhances early visual processing: a review and new evidence from event-related potentials.
    Correa A; Lupiáñez J; Madrid E; Tudela P
    Brain Res; 2006 Mar; 1076(1):116-28. PubMed ID: 16516173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement in visual search with practice: mapping learning-related changes in neurocognitive stages of processing.
    Clark K; Appelbaum LG; van den Berg B; Mitroff SR; Woldorff MG
    J Neurosci; 2015 Apr; 35(13):5351-9. PubMed ID: 25834059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the attentional span by foveal and parafoveal task load: An ERP study using attentional probes.
    Kornrumpf B; Sommer W
    Psychophysiology; 2015 Sep; 52(9):1218-27. PubMed ID: 25990658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Error significance but not error expectancy predicts error-related negativities for different error types.
    Maier ME; Steinhauser M
    Behav Brain Res; 2016 Jan; 297():259-67. PubMed ID: 26481402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory and visual cortical activity during selective attention in fragile X syndrome: a cascade of processing deficiencies.
    Van der Molen MJ; Van der Molen MW; Ridderinkhof KR; Hamel BC; Curfs LM; Ramakers GJ
    Clin Neurophysiol; 2012 Apr; 123(4):720-9. PubMed ID: 21958658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attentional resources modulate error processing-related brain electrical activity: Evidence from a dual-task design.
    Han M; Shi L; Jia S
    Brain Res; 2017 Sep; 1670():68-75. PubMed ID: 28578905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task difficulty modulates brain activation in the emotional oddball task.
    Siciliano RE; Madden DJ; Tallman CW; Boylan MA; Kirste I; Monge ZA; Packard LE; Potter GG; Wang L
    Brain Res; 2017 Jun; 1664():74-86. PubMed ID: 28377158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball task.
    Chen Y; Huang X; Luo Y; Peng C; Liu C
    Brain Res; 2010 Apr; 1325():100-11. PubMed ID: 20170647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lost in vision: ERP correlates of exogenous tactile attention when engaging in a visual task.
    Jones A; Forster B
    Neuropsychologia; 2013 Mar; 51(4):675-85. PubMed ID: 23340481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speeded response errors and the error-related negativity modulate early sensory processing.
    Beatty PJ; Buzzell GA; Roberts DM; McDonald CG
    Neuroimage; 2018 Dec; 183():112-120. PubMed ID: 30096369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of deficit of visuospatial attention shift in children with developmental coordination disorder: a neurophysiological measure of the endogenous Posner paradigm.
    Tsai CL; Pan CY; Cherng RJ; Hsu YW; Chiu HH
    Brain Cogn; 2009 Dec; 71(3):246-58. PubMed ID: 19751962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of task difficulty on evoked gamma activity and ERPs in a visual discrimination task.
    Senkowski D; Herrmann CS
    Clin Neurophysiol; 2002 Nov; 113(11):1742-53. PubMed ID: 12417227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When and where perceptual load interacts with voluntary visuospatial attention: an event-related potential and dipole modeling study.
    Fu S; Zinni M; Squire PN; Kumar R; Caggiano DM; Parasuraman R
    Neuroimage; 2008 Feb; 39(3):1345-55. PubMed ID: 18006335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of perceptual load on tactile spatial attention: Evidence from event-related potentials.
    Gherri E; Berreby F
    Brain Res; 2017 Oct; 1673():42-51. PubMed ID: 28803830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing links between visual short term memory, visual attention and cognitive control processes through practice: An electrophysiological insight.
    Fuggetta G; Duke PA
    Biol Psychol; 2017 May; 126():48-60. PubMed ID: 28396214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.