These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27050386)

  • 61. Synergistic Effect of Binary Electrolyte on Enhancement of the Energy Density in Li-O
    Hase Y; Nishioka K; Komori Y; Kusumoto T; Seki J; Kamiya K; Nakanishi S
    J Phys Chem Lett; 2020 Sep; 11(18):7657-7663. PubMed ID: 32830981
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Li[B(OCH2CF3)4]: synthesis, characterization and electrochemical application as a conducting salt for LiSB batteries.
    Rohde M; Eiden P; Leppert V; Schmidt M; Garsuch A; Semrau G; Krossing I
    Chemphyschem; 2015 Feb; 16(3):666-75. PubMed ID: 25521464
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A highly efficient polysulfide mediator for lithium-sulfur batteries.
    Liang X; Hart C; Pang Q; Garsuch A; Weiss T; Nazar LF
    Nat Commun; 2015 Jan; 6():5682. PubMed ID: 25562485
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Catalyst and electrolyte synergy in Li-O2 batteries.
    Gittleson FS; Sekol RC; Doubek G; Linardi M; Taylor AD
    Phys Chem Chem Phys; 2014 Feb; 16(7):3230-7. PubMed ID: 24406938
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.
    Zhu Y; Fan X; Suo L; Luo C; Gao T; Wang C
    ACS Nano; 2016 Jan; 10(1):1529-38. PubMed ID: 26700975
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Molecular structure and stability of dissolved lithium polysulfide species.
    Vijayakumar M; Govind N; Walter E; Burton SD; Shukla A; Devaraj A; Xiao J; Liu J; Wang C; Karim A; Thevuthasan S
    Phys Chem Chem Phys; 2014 Jun; 16(22):10923-32. PubMed ID: 24770561
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enhanced cycle performance of lithium-sulfur batteries using a separator modified with a PVDF-C layer.
    Wei H; Ma J; Li B; Zuo Y; Xia D
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20276-81. PubMed ID: 25275455
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Understanding the degradation mechanism of rechargeable lithium/sulfur cells: a comprehensive study of the sulfur-graphene oxide cathode after discharge-charge cycling.
    Feng X; Song MK; Stolte WC; Gardenghi D; Zhang D; Sun X; Zhu J; Cairns EJ; Guo J
    Phys Chem Chem Phys; 2014 Aug; 16(32):16931-40. PubMed ID: 24781200
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Preferential Solvation of Lithium Cations and Impacts on Oxygen Reduction in Lithium-Air Batteries.
    Zheng D; Qu D; Yang XQ; Lee HS; Qu D
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19923-9. PubMed ID: 26301499
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reactivity and Diffusivity of Li Polysulfides: A Fundamental Study Using Impedance Spectroscopy.
    Drvarič Talian S; Moškon J; Dominko R; Gaberšček M
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29760-29770. PubMed ID: 28809476
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Electrochemical (de)lithiation of 1D sulfur chains in Li-S batteries: a model system study.
    Yang CP; Yin YX; Guo YG; Wan LJ
    J Am Chem Soc; 2015 Feb; 137(6):2215-8. PubMed ID: 25650588
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Electrochemical reactions of lithium-sulfur batteries: an analytical study using the organic conversion technique.
    Kawase A; Shirai S; Yamoto Y; Arakawa R; Takata T
    Phys Chem Chem Phys; 2014 May; 16(20):9344-50. PubMed ID: 24714735
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Exploring reaction dynamics in lithium-sulfur batteries by time-resolved operando sulfur K-edge X-ray absorption spectroscopy.
    Zhao E; Wang J; Li F; Jiang Z; Yang XQ; Wang F; Li H; Yu X
    Chem Commun (Camb); 2019 Apr; 55(34):4993-4996. PubMed ID: 30968893
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Li2S Film Formation on Lithium Anode Surface of Li-S batteries.
    Liu Z; Bertolini S; Balbuena PB; Mukherjee PP
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4700-8. PubMed ID: 26836249
    [TBL] [Abstract][Full Text] [Related]  

  • 77. On the Challenge of Electrolyte Solutions for Li-Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM.
    Sharon D; Etacheri V; Garsuch A; Afri M; Frimer AA; Aurbach D
    J Phys Chem Lett; 2013 Jan; 4(1):127-31. PubMed ID: 26291224
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.
    Yang X; Zhang L; Zhang F; Huang Y; Chen Y
    ACS Nano; 2014 May; 8(5):5208-15. PubMed ID: 24749945
    [TBL] [Abstract][Full Text] [Related]  

  • 79. 7Li NMR studies on complexation reactions of lithium ion with cryptand C211 in ionic liquids: comparison with corresponding reactions in nonaqueous solvents.
    Shirai A; Ikeda Y
    Inorg Chem; 2011 Mar; 50(5):1619-27. PubMed ID: 21275388
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium-Oxygen Batteries.
    Kwabi DG; Tułodziecki M; Pour N; Itkis DM; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2016 Apr; 7(7):1204-12. PubMed ID: 26949979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.