These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
491 related articles for article (PubMed ID: 27050573)
1. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants. Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573 [TBL] [Abstract][Full Text] [Related]
2. Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests. Kuhnem PR; Del Ponte EM; Dong Y; Bergstrom GC Phytopathology; 2015 Apr; 105(4):441-8. PubMed ID: 25338173 [TBL] [Abstract][Full Text] [Related]
3. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N; Schäfer W; Bormann J Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226 [TBL] [Abstract][Full Text] [Related]
4. Fungal Endophytes Control F Abdallah M; De Boevre M; Landschoot S; De Saeger S; Haesaert G; Audenaert K Toxins (Basel); 2018 Nov; 10(12):. PubMed ID: 30477214 [No Abstract] [Full Text] [Related]
5. Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo. Shala-Mayrhofer V; Varga E; Marjakaj R; Berthiller F; Musolli A; Berisha D; Kelmendi B; Lemmens M Food Addit Contam Part B Surveill; 2013; 6(4):237-43. PubMed ID: 24779930 [TBL] [Abstract][Full Text] [Related]
6. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum. Van Nguyen T; Kröger C; Bönnighausen J; Schäfer W; Bormann J Mol Plant Microbe Interact; 2013 Dec; 26(12):1378-94. PubMed ID: 23945004 [TBL] [Abstract][Full Text] [Related]
7. Effect of Fungicide Application and Corn Hybrid Class on the Presence of Chibuogwu MO; Groves CL; Mueller B; Smith DL Plant Dis; 2024 Jul; 108(7):2090-2095. PubMed ID: 38393756 [TBL] [Abstract][Full Text] [Related]
9. Presence and Correlation of Reed H; Mueller B; Groves CL; Smith DL Plant Dis; 2022 Jan; 106(1):87-92. PubMed ID: 34491093 [TBL] [Abstract][Full Text] [Related]
10. Gibberella ear rot of maize (Zea mays) in Nepal: distribution of the mycotoxins nivalenol and deoxynivalenol in naturally and experimentally infected maize. Desjardins AE; Busman M; Manandhar G; Jarosz AM; Manandhar HK; Proctor RH J Agric Food Chem; 2008 Jul; 56(13):5428-36. PubMed ID: 18533662 [TBL] [Abstract][Full Text] [Related]
11. Fusarium species complex and mycotoxins in grain maize from maize hybrid trials and from grower's fields. Dorn B; Forrer HR; Jenny E; Wettstein FE; Bucheli TD; Vogelgsang S J Appl Microbiol; 2011 Sep; 111(3):693-706. PubMed ID: 21714835 [TBL] [Abstract][Full Text] [Related]
12. Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum. Kosawang C; Karlsson M; Vélëz H; Rasmussen PH; Collinge DB; Jensen B; Jensen DF Fungal Biol; 2014 Apr; 118(4):364-73. PubMed ID: 24742831 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome analysis of maize resistance to Fusarium graminearum. Liu Y; Guo Y; Ma C; Zhang D; Wang C; Yang Q BMC Genomics; 2016 Jun; 17():477. PubMed ID: 27352627 [TBL] [Abstract][Full Text] [Related]
14. Influence of water activity and temperature on growth and production of trichothecenes by Fusarium graminearum sensu stricto and related species in maize grains. Belizán MME; Gomez ALA; Terán Baptista ZP; Jimenez CM; Sánchez Matías MDH; Catalán CAN; Sampietro DA Int J Food Microbiol; 2019 Sep; 305():108242. PubMed ID: 31176953 [TBL] [Abstract][Full Text] [Related]
15. Maize peroxidase Px5 has a highly conserved sequence in inbreds resistant to mycotoxin producing fungi which enhances fungal and insect resistance. Dowd PF; Johnson ET J Plant Res; 2016 Jan; 129(1):13-20. PubMed ID: 26659597 [TBL] [Abstract][Full Text] [Related]
17. Quantification of Fusarium graminearum and Fusarium culmorum by real-time PCR system and zearalenone assessment in maize. Atoui A; El Khoury A; Kallassy M; Lebrihi A Int J Food Microbiol; 2012 Mar; 154(1-2):59-65. PubMed ID: 22240058 [TBL] [Abstract][Full Text] [Related]
18. Fusarium spp. and Fusarium mycotoxins in maize: a problem for Flanders? Isebaert S; Haesaert G; Devreese R; Maene P; Fremaut F; Vlaemynck G Commun Agric Appl Biol Sci; 2005; 70(3):129-36. PubMed ID: 16637167 [TBL] [Abstract][Full Text] [Related]
19. Production of mycotoxins by selected Fusarium graminearum and F. crookwellense isolates. Sydenham EW; Marasas WF; Thiel PG; Shephard GS; Nieuwenhuis JJ Food Addit Contam; 1991; 8(1):31-41. PubMed ID: 1826664 [TBL] [Abstract][Full Text] [Related]
20. Proteomic profiling of two maize inbreds during early gibberella ear rot infection. Mohammadi M; Anoop V; Gleddie S; Harris LJ Proteomics; 2011 Sep; 11(18):3675-84. PubMed ID: 21751381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]