These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 27050573)

  • 21. Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage.
    Desjardins AE; Proctor RH
    Fungal Biol; 2011 Jan; 115(1):38-48. PubMed ID: 21215953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride.
    Naef A; Zesiger T; Défago G
    J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of trichothecenes and zearalenone by isolates of Fusarium spp. from Argentinian maize.
    Molto GA; Gonzalez HH; Resnik SL; Pereyra Gonzalez A
    Food Addit Contam; 1997 Apr; 14(3):263-8. PubMed ID: 9135723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation.
    Atanasova-Penichon V; Pons S; Pinson-Gadais L; Picot A; Marchegay G; Bonnin-Verdal MN; Ducos C; Barreau C; Roucolle J; Sehabiague P; Carolo P; Richard-Forget F
    Mol Plant Microbe Interact; 2012 Dec; 25(12):1605-16. PubMed ID: 23035912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of disease symptoms and mycotoxins in maize ears infected by Fusarium culmorum and Fusarium graminearum.
    Oldenburg E; Ellner F
    Mycotoxin Res; 2015 Aug; 31(3):117-26. PubMed ID: 25904523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence.
    Gardiner DM; Kazan K; Manners JM
    Mol Plant Microbe Interact; 2009 Dec; 22(12):1588-600. PubMed ID: 19888824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From laboratory to the field: biological control of Fusarium graminearum on infected maize crop residues.
    Gimeno A; Kägi A; Drakopoulos D; Bänziger I; Lehmann E; Forrer HR; Keller B; Vogelgsang S
    J Appl Microbiol; 2020 Sep; 129(3):680-694. PubMed ID: 32176428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of essential oils on growth rate, zearalenone and deoxynivalenol production by Fusarium graminearum under different temperature and water activity conditions in maize grain.
    Velluti A; Sanchis V; Ramos AJ; Turon C; Marín S
    J Appl Microbiol; 2004; 96(4):716-24. PubMed ID: 15012810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aggressiveness and Mycotoxin Production by
    Machado FJ; de Barros AV; McMaster N; Schmale DG; Vaillancourt LJ; Del Ponte EM
    Phytopathology; 2022 Feb; 112(2):271-277. PubMed ID: 34142851
    [No Abstract]   [Full Text] [Related]  

  • 30. Genetic relationships, carbendazim sensitivity and mycotoxin production of the Fusarium graminearum populations from maize, wheat and rice in eastern China.
    Qiu J; Shi J
    Toxins (Basel); 2014 Aug; 6(8):2291-309. PubMed ID: 25093387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anti-mycotoxigenic and antifungal activity of ginger, turmeric, thyme and rosemary essential oils in deoxynivalenol (DON) and zearalenone (ZEA) producing
    Romoli JCZ; Silva MV; Pante GC; Hoeltgebaum D; Castro JC; Oliveira da Rocha GH; Capoci IRG; Nerilo SB; Mossini SAG; Micotti da Gloria E; Svidzinski TIE; Graton Mikcha JM; Machinski M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Feb; 39(2):362-372. PubMed ID: 34854801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast.
    Zhang Y; He J; Jia LJ; Yuan TL; Zhang D; Guo Y; Wang Y; Tang WH
    PLoS Pathog; 2016 Mar; 12(3):e1005485. PubMed ID: 26974960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Covariation between line and testcross performance for reduced mycotoxin concentrations in European maize after silk channel inoculation of two Fusarium species.
    Löffler M; Kessel B; Ouzunova M; Miedaner T
    Theor Appl Genet; 2011 Mar; 122(5):925-34. PubMed ID: 21153627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trichothecene genotypes and chemotypes in Fusarium graminearum complex strains isolated from maize fields of northwest Argentina.
    Sampietro DA; Ficoseco ME; Jimenez CM; Vattuone MA; Catalán CA
    Int J Food Microbiol; 2012 Feb; 153(1-2):229-33. PubMed ID: 22119268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of deoxynivalenol and zearalenone by isolates of Fusarium graminearum Schw.
    Megalla SE; Bennett GA; Ellis JJ; Shotwell OI
    J Basic Microbiol; 1986; 26(7):415-9. PubMed ID: 2951515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A microsatellite based method for quantification of fungi in decomposing plant material elucidates the role of Fusarium graminearum DON production in the saprophytic competition with Trichoderma atroviride in maize tissue microcosms.
    Naef A; Senatore M; Défago G
    FEMS Microbiol Ecol; 2006 Feb; 55(2):211-20. PubMed ID: 16420629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reprogrammed endophytic microbial community in maize stalk induced by Trichoderma asperellum biocontrol agent against Fusarium diseases and mycotoxin accumulation.
    He A; Sun J; Wang X; Zou L; Fu B; Chen J
    Fungal Biol; 2019 Jun; 123(6):448-455. PubMed ID: 31126421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe).
    Santiago R; Reid LM; Arnason JT; Zhu X; Martinez N; Malvar RA
    J Agric Food Chem; 2007 Jun; 55(13):5186-93. PubMed ID: 17547419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxigenic potential of Fusarium graminearum isolated from maize of northwest Argentina.
    Sampietro DA; Apud GR; Belizán MM; Vattuone MA; Catalán CA
    Braz J Microbiol; 2013; 44(2):417-22. PubMed ID: 24294230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transgenic Wheat Expressing a Barley UDP-Glucosyltransferase Detoxifies Deoxynivalenol and Provides High Levels of Resistance to Fusarium graminearum.
    Li X; Shin S; Heinen S; Dill-Macky R; Berthiller F; Nersesian N; Clemente T; McCormick S; Muehlbauer GJ
    Mol Plant Microbe Interact; 2015 Nov; 28(11):1237-46. PubMed ID: 26214711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.