BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 27050745)

  • 1. Bromide oxidation by ferrate(VI): The formation of active bromine and bromate.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Water Res; 2016 Jun; 96():188-97. PubMed ID: 27050745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of bromate during ferrate(VI) oxidation of bromide in water.
    Huang X; Deng Y; Liu S; Song Y; Li N; Zhou J
    Chemosphere; 2016 Jul; 155():528-533. PubMed ID: 27153235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bromate formation in bromide-containing water through the cobalt-mediated activation of peroxymonosulfate.
    Li Z; Chen Z; Xiang Y; Ling L; Fang J; Shang C; Dionysiou DD
    Water Res; 2015 Oct; 83():132-40. PubMed ID: 26143270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bromate formation from bromide oxidation by the UV/persulfate process.
    Fang JY; Shang C
    Environ Sci Technol; 2012 Aug; 46(16):8976-83. PubMed ID: 22831804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Ferrate Oxidation of Micropollutants via Inducing Fe(V)/Fe(IV) Formation Needs Caution: Increased Conversion of Bromide to Bromate.
    Li G; Jiang J; He M; Rao D; Zhang J; Sun B
    Environ Sci Technol; 2023 Nov; 57(47):18991-18999. PubMed ID: 37243626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferrate(VI) assists in reducing cytotoxicity and genotoxicity to mammalian cells and organic bromine formation in ozonated wastewater.
    Du Y; Liu T; Yang LL; Song ZM; Dai X; Wang WL; Lai B; Wu QY
    Water Res; 2024 Apr; 253():121353. PubMed ID: 38401473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorination of bromide-containing waters: enhanced bromate formation in the presence of synthetic metal oxides and deposits formed in drinking water distribution systems.
    Liu C; von Gunten U; Croué JP
    Water Res; 2013 Sep; 47(14):5307-15. PubMed ID: 23866145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: catalytic disproportionation of hypobromous acid.
    Liu C; von Gunten U; Croué JP
    Environ Sci Technol; 2012 Oct; 46(20):11054-61. PubMed ID: 22963047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of Anions on Bromate Formation During Ozonation of Bromide-Containing Water].
    Wu Y; Wu CD; Liu LG; Yuan BJ
    Huan Jing Ke Xue; 2015 Sep; 36(9):3292-7. PubMed ID: 26717690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced removal of ammonia in Fe(VI)/Br
    Qi Y; Wu N; Tu Z; Sharma VK; Wei Z; Zhou D; Wang Z; Qu R
    Water Res; 2022 Aug; 222():118953. PubMed ID: 35964513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.
    Fang J; Zhao Q; Fan C; Shang C; Fu Y; Zhang X
    Chemosphere; 2017 Sep; 183():582-588. PubMed ID: 28570902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An overview of bromate formation in chemical oxidation processes: Occurrence, mechanism, influencing factors, risk assessment, and control strategies.
    Yang J; Dong Z; Jiang C; Wang C; Liu H
    Chemosphere; 2019 Dec; 237():124521. PubMed ID: 31408797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation potentials of bromate and brominated disinfection by-products in bromide-containing water by ozonation.
    Lin T; Wu S; Chen W
    Environ Sci Pollut Res Int; 2014 Dec; 21(24):13987-4003. PubMed ID: 25035057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing bromate formation with H(+)-form high silica zeolites during ozonation of bromide-containing water: Effectiveness and mechanisms.
    Zhang T; Hou P; Qiang Z; Lu X; Wang Q
    Chemosphere; 2011 Jan; 82(4):608-12. PubMed ID: 21093888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peracetic acid oxidation of saline waters in the absence and presence of H ₂O ₂: secondary oxidant and disinfection byproduct formation.
    Shah AD; Liu ZQ; Salhi E; Höfer T; von Gunten U
    Environ Sci Technol; 2015 Feb; 49(3):1698-705. PubMed ID: 25611970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds--a critical review.
    Heeb MB; Criquet J; Zimmermann-Steffens SG; von Gunten U
    Water Res; 2014 Jan; 48():15-42. PubMed ID: 24184020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of bromate in sulfate radical based oxidation: mechanistic aspects and suppression by dissolved organic matter.
    Lutze HV; Bakkour R; Kerlin N; von Sonntag C; Schmidt TC
    Water Res; 2014 Apr; 53():370-7. PubMed ID: 24565691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of bromate depression from H
    Yu J; Wang Y; Wang Q; Wang Z; Zhang D; Yang M
    Chemosphere; 2020 Aug; 252():126596. PubMed ID: 32240859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Competitive adsorption between bromine and bromate on activated carbon and impact on bromate formation].
    An D; Song JX; Le LS; Wang WZ
    Huan Jing Ke Xue; 2008 Apr; 29(4):948-53. PubMed ID: 18637344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of different solutes, natural organic matter, and particulate Fe(III) on ferrate(VI) decomposition in aqueous solutions.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Environ Sci Technol; 2015 Mar; 49(5):2841-8. PubMed ID: 25629296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.