These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27051471)

  • 1. Electrical lysis of cells for detergent-free droplet assays.
    de Lange N; Tran TM; Abate AR
    Biomicrofluidics; 2016 Mar; 10(2):024114. PubMed ID: 27051471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica.
    Beneyton T; Thomas S; Griffiths AD; Nicaud JM; Drevelle A; Rossignol T
    Microb Cell Fact; 2017 Jan; 16(1):18. PubMed ID: 28143479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-Droplet Electromechanical Cell Lysis and Enhanced Enzymatic Assay Driven by Ion Concentration Polarization.
    Kim S; Krishnamurthy A; Kasiviswanathan P; Ganapathysubramanian B; Anand RK
    Anal Chem; 2023 Oct; 95(39):14624-14633. PubMed ID: 37738658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective cell encapsulation, lysis, pico-injection and size-controlled droplet generation using traveling surface acoustic waves in a microfluidic device.
    Mutafopulos K; Lu PJ; Garry R; Spink P; Weitz DA
    Lab Chip; 2020 Nov; 20(21):3914-3921. PubMed ID: 32966482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart Droplet Microfluidic System for Single-Cell Selective Lysis and Real-Time Sorting Based on Microinjection and Image Recognition.
    Yu Z; Jin J; Chen S; Shui L; Chen H; Shi L; Zhu Y
    Anal Chem; 2023 Aug; 95(34):12875-12883. PubMed ID: 37581609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemistry and biology in femtoliter and picoliter volume droplets.
    Chiu DT; Lorenz RM
    Acc Chem Res; 2009 May; 42(5):649-58. PubMed ID: 19260732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet-based microfluidic platform for heterogeneous enzymatic assays.
    Chang C; Sustarich J; Bharadwaj R; Chandrasekaran A; Adams PD; Singh AK
    Lab Chip; 2013 May; 13(9):1817-22. PubMed ID: 23507976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Pipette-Tip Based Method for Seeding Cells to Droplet Microfluidic Platforms.
    Sinha N; Subedi N; Wimmers F; Soennichsen M; Tel J
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30799837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demand-driven active droplet generation and sorting based on positive pressure-controlled fluid wall.
    Zhang Y; Lin Y; Hong X; Di C; Xin Y; Wang X; Qi S; Liu BF; Zhang Z; Du W
    Anal Bioanal Chem; 2023 Sep; 415(22):5311-5322. PubMed ID: 37392212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Micro-droplet characterization and its application for amino acid detection in droplet microfluidic system].
    Yuan H; Dong L; Tu R; Du W; Ji S; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2014 Jan; 30(1):139-46. PubMed ID: 24818488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous electrical lysis of cancer cells in a microfluidic device with passivated interdigitated electrodes.
    Pandian K; Ajanth Praveen M; Hoque SZ; Sudeepthi A; Sen AK
    Biomicrofluidics; 2020 Nov; 14(6):064101. PubMed ID: 33163136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.
    Schoeman RM; Kemna EW; Wolbers F; van den Berg A
    Electrophoresis; 2014 Feb; 35(2-3):385-92. PubMed ID: 23856757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultra high-efficiency droplet microfluidics platform using automatically synchronized droplet pairing and merging.
    Zhang H; Guzman AR; Wippold JA; Li Y; Dai J; Huang C; Han A
    Lab Chip; 2020 Nov; 20(21):3948-3959. PubMed ID: 32935710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectrophoresis Response of Water-in-Oil-in-Water Double Emulsion Droplets with Singular or Dual Cores.
    Jiang T; Jia Y; Sun H; Deng X; Tang D; Ren Y
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33348930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled generation of droplets using an electric field in a flow-focusing paper-based device.
    Jiang T; Wu Y
    Electrophoresis; 2022 Feb; 43(4):601-608. PubMed ID: 34747509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation.
    Collins DJ; Neild A; deMello A; Liu AQ; Ai Y
    Lab Chip; 2015 Sep; 15(17):3439-59. PubMed ID: 26226550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet encapsulation improves accuracy of immune cell cytokine capture assays.
    Yuan Y; Brouchon J; Calvo-Calle JM; Xia J; Sun L; Zhang X; Clayton KL; Ye F; Weitz DA; Heyman JA
    Lab Chip; 2020 Apr; 20(8):1513-1520. PubMed ID: 32242586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.