BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27051977)

  • 1. The first implementation of respiratory triggered 4DCBCT on a linear accelerator.
    O'Brien RT; Cooper BJ; Shieh CC; Stankovic U; Keall PJ; Sonke JJ
    Phys Med Biol; 2016 May; 61(9):3488-99. PubMed ID: 27051977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing 4DCBCT imaging time and dose: the first implementation of variable gantry speed 4DCBCT on a linear accelerator.
    O'Brien RT; Stankovic U; Sonke JJ; Keall PJ
    Phys Med Biol; 2017 Jun; 62(11):4300-4317. PubMed ID: 28475490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of gantry speed on image quality and imaging dose for 4D cone-beam CT acquisition.
    Santoso AP; Song KH; Qin Y; Gardner SJ; Liu C; Chetty IJ; Movsas B; Ajlouni M; Wen N
    Radiat Oncol; 2016 Jul; 11():98. PubMed ID: 27473367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory motion guided four dimensional cone beam computed tomography: encompassing irregular breathing.
    O'Brien RT; Cooper BJ; Kipritidis J; Shieh CC; Keall PJ
    Phys Med Biol; 2014 Feb; 59(3):579-95. PubMed ID: 24434622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimizing 4DCBCT imaging dose and scan time with Respiratory Motion Guided 4DCBCT: a pre-clinical investigation.
    Reynolds T; Lim P; Keall PJ; O'Brien R
    Biomed Phys Eng Express; 2021 Jan; 7(2):. PubMed ID: 33455950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Faster and lower dose imaging: evaluating adaptive, constant gantry velocity and angular separation in fast low-dose 4D cone beam CT imaging.
    Lau BKF; Dillon O; Vinod SK; O'Brien RT; Reynolds T
    Med Phys; 2024 Feb; 51(2):1364-1382. PubMed ID: 37427751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing 4DCBCT projection allocation to respiratory bins.
    O'Brien RT; Kipritidis J; Shieh CC; Keall PJ
    Phys Med Biol; 2014 Oct; 59(19):5631-49. PubMed ID: 25190310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the four-dimensional cone beam computed tomography with varying gantry rotation speed.
    Yoganathan SA; Maria Das KJ; Mohamed Ali S; Agarwal A; Mishra SP; Kumar S
    Br J Radiol; 2016; 89(1060):20150870. PubMed ID: 26916281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing 4D cone beam computed tomography acquisition by varying the gantry velocity and projection time interval.
    O'Brien RT; Cooper BJ; Keall PJ
    Phys Med Biol; 2013 Mar; 58(6):1705-23. PubMed ID: 23429168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion-map constrained image reconstruction (MCIR): application to four-dimensional cone-beam computed tomography.
    Park JC; Kim JS; Park SH; Liu Z; Song B; Song WY
    Med Phys; 2013 Dec; 40(12):121710. PubMed ID: 24320496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The first-in-human implementation of adaptive 4D cone beam CT for lung cancer radiotherapy: 4DCBCT in less time with less dose.
    O'Brien RT; Dillon O; Lau B; George A; Smith S; Wallis A; Sonke JJ; Keall PJ; Vinod SK
    Radiother Oncol; 2021 Aug; 161():29-34. PubMed ID: 34052341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual cardiac and respiratory gated thoracic imaging via adaptive gantry velocity and projection rate modulation on a linear accelerator: A Proof-of-Concept Simulation Study.
    Reynolds T; Shieh CC; Keall PJ; O'Brien RT
    Med Phys; 2019 Sep; 46(9):4116-4126. PubMed ID: 31220360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of tumor motion trajectories using PICCS-4DCBCT: a validation study.
    Qi Z; Chen GH
    Med Phys; 2011 Oct; 38(10):5530-8. PubMed ID: 21992371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing 4DCBCT scan time and dose through motion compensated acquisition and reconstruction.
    Lau BKF; Reynolds T; Wallis A; Smith S; George A; Keall PJ; Sonke JJ; Vinod SK; Dillon O; O'Brien RT
    Phys Med Biol; 2021 Mar; 66(7):. PubMed ID: 33662943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-dimensional cone-beam computed tomography and digital tomosynthesis reconstructions using respiratory signals extracted from transcutaneously inserted metal markers for liver SBRT.
    Park JC; Park SH; Kim JH; Yoon SM; Kim SS; Kim JS; Liu Z; Watkins T; Song WY
    Med Phys; 2011 Feb; 38(2):1028-36. PubMed ID: 21452740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time respiratory triggered four dimensional cone-beam CT halves imaging dose compared to conventional 4D CBCT.
    Cooper BJ; O'Brien RT; Shieh CC; Keall PJ
    Phys Med Biol; 2019 Mar; 64(7):07NT01. PubMed ID: 30754038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breath-hold target localization with simultaneous kilovoltage/megavoltage cone-beam computed tomography and fast reconstruction.
    Blessing M; Stsepankou D; Wertz H; Arns A; Lohr F; Hesser J; Wenz F
    Int J Radiat Oncol Biol Phys; 2010 Nov; 78(4):1219-26. PubMed ID: 20554124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance studies of four-dimensional cone beam computed tomography.
    Qi Z; Chen GH
    Phys Med Biol; 2011 Oct; 56(20):6709-21. PubMed ID: 21965275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respiratory triggered 4D cone-beam computed tomography: a novel method to reduce imaging dose.
    Cooper BJ; O'Brien RT; Balik S; Hugo GD; Keall PJ
    Med Phys; 2013 Apr; 40(4):041901. PubMed ID: 23556895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical use of iterative 4D-cone beam computed tomography reconstructions to investigate respiratory tumor motion in lung cancer patients.
    Schmidt ML; Poulsen PR; Toftegaard J; Hoffmann L; Hansen D; Sørensen TS
    Acta Oncol; 2014 Aug; 53(8):1107-13. PubMed ID: 24957556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.