These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27051998)

  • 1. An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content.
    Liu W; Du P; Zhao Z; Zhang L
    Sci Rep; 2016 Apr; 6():23889. PubMed ID: 27051998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble learning for spatial interpolation of soil potassium content based on environmental information.
    Liu W; Du P; Wang D
    PLoS One; 2015; 10(4):e0124383. PubMed ID: 25928138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing.
    Qiao P; Lei M; Yang S; Yang J; Guo G; Zhou X
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15597-15608. PubMed ID: 29572743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Ordinary Kriging and Inverse Distance Weighting Methods for Modeling Chromium and Cadmium Soil Pollution in E-Waste Sites in Douala, Cameroon.
    Ouabo RE; Sangodoyin AY; Ogundiran MB
    J Health Pollut; 2020 Jun; 10(26):200605. PubMed ID: 32509406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparison of various spatial interpolation methods for non-stationary regional soil mercury content].
    Hu KL; Li BG; Lu YZ; Zhang FR
    Huan Jing Ke Xue; 2004 May; 25(3):132-7. PubMed ID: 15327270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy Assessment of Kriging, artificial neural network, and a hybrid approach integrating spatial and terrain data in estimating and mapping of soil organic carbon.
    Kılıç M; Gündoğan R; Günal H; Cemek B
    PLoS One; 2022; 17(5):e0268658. PubMed ID: 35617376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ordinary kriging vs inverse distance weighting: spatial interpolation of the sessile community of Madagascar reef, Gulf of Mexico.
    Zarco-Perello S; Simões N
    PeerJ; 2017; 5():e4078. PubMed ID: 29204321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Extended Kriging Method to Interpolate Near-Surface Soil Moisture Data Measured by Wireless Sensor Networks.
    Zhang J; Li X; Yang R; Liu Q; Zhao L; Dou B
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28617351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution prediction of soil As in a large-scale arsenic slag contaminated site based on an integrated model and multi-source environmental data.
    Liu G; Zhou X; Li Q; Shi Y; Guo G; Zhao L; Wang J; Su Y; Zhang C
    Environ Pollut; 2020 Dec; 267():115631. PubMed ID: 33254608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].
    Yang SH; Zhang HT; Guo L; Ren Y
    Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1649-56. PubMed ID: 26572015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dataset characteristics influence the performance of different interpolation methods for soil salinity spatial mapping.
    Fazeli Sangani M; Namdar Khojasteh D; Owens G
    Environ Monit Assess; 2019 Oct; 191(11):684. PubMed ID: 31659465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of four spatial interpolation methods for estimating soil moisture in a complex terrain catchment.
    Yao X; Fu B; Lü Y; Sun F; Wang S; Liu M
    PLoS One; 2013; 8(1):e54660. PubMed ID: 23372749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Spatial distribution of soil total nitrogen in Liangshui National Nature Reserve based on local model].
    Zhen Z; Guo ZY; Zhao YH; Li FR; Wei QB
    Ying Yong Sheng Tai Xue Bao; 2016 Feb; 27(2):549-58. PubMed ID: 27396130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Spatial distribution prediction of surface soil Pb in a battery contaminated site].
    Liu G; Niu JJ; Zhang C; Zhao X; Guo GL
    Huan Jing Ke Xue; 2014 Dec; 35(12):4712-9. PubMed ID: 25826945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions.
    Ding Q; Wang Y; Zhuang D
    J Environ Manage; 2018 Apr; 212():23-31. PubMed ID: 29427938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modeling of soil antibiotics.
    Shi WJ; Yue TX; Du ZP; Wang Z; Li XW
    Sci Total Environ; 2016 Feb; 543(Pt A):609-619. PubMed ID: 26613514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of predicting spatial contaminant distributions at industrial sites using partitioned interpolation method.
    Qiao P; Yang S; Wei W; Li P; Cheng Y; Liang S; Lei M; Chen T
    Environ Geochem Health; 2021 Jan; 43(1):23-36. PubMed ID: 32696201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening and optimization of interpolation methods for mapping soil-borne polychlorinated biphenyls.
    Liu A; Qu C; Zhang J; Sun W; Shi C; Lima A; De Vivo B; Huang H; Palmisano M; Guarino A; Qi S; Albanese S
    Sci Total Environ; 2024 Feb; 913():169498. PubMed ID: 38154632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites.
    Qiao P; Li P; Cheng Y; Wei W; Yang S; Lei M; Chen T
    Environ Geochem Health; 2019 Dec; 41(6):2709-2730. PubMed ID: 31144251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the mapping accuracy of soil heavy metals through an adaptive multi-fidelity interpolation method.
    Ju L; Guo S; Ruan X; Wang Y
    Environ Pollut; 2023 Aug; 330():121827. PubMed ID: 37187280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.