These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 27052025)
21. Poultry flocks as a source of Campylobacter contamination of broiler carcasses. Wieczorek K; Osek J Pol J Vet Sci; 2015; 18(1):101-6. PubMed ID: 25928916 [TBL] [Abstract][Full Text] [Related]
22. The impact of biosecurity and partial depopulation on Campylobacter prevalence in Irish broiler flocks with differing levels of hygiene and economic performance. Smith S; Messam LL; Meade J; Gibbons J; McGill K; Bolton D; Whyte P Infect Ecol Epidemiol; 2016; 6():31454. PubMed ID: 27171888 [TBL] [Abstract][Full Text] [Related]
23. Quantification of Growth of Campylobacter and Extended Spectrum β-Lactamase Producing Bacteria Sheds Light on Black Box of Enrichment Procedures. Hazeleger WC; Jacobs-Reitsma WF; den Besten HM Front Microbiol; 2016; 7():1430. PubMed ID: 27672384 [TBL] [Abstract][Full Text] [Related]
24. Level of Detection (LOD Hazeleger WC; Jacobs-Reitsma WF; Den Besten HMW Front Microbiol; 2022; 13():834568. PubMed ID: 35572641 [TBL] [Abstract][Full Text] [Related]
25. Incidence of Campylobacter spp. in broiler flocks monitored from hatching to slaughter. Pokamunski S; Kass N; Borochovich E; Marantz B; Rogol M Avian Pathol; 1986; 15(1):83-92. PubMed ID: 18766507 [TBL] [Abstract][Full Text] [Related]
26. Use of blood-free enrichment broth in the development of a rapid protocol to detect Campylobacter in twenty-five grams of chicken meat. Hayashi M; Kubota-Hayashi S; Natori T; Mizuno T; Miyata M; Yoshida S; Zhang J; Kawamoto K; Ohkusu K; Makino S; Ezaki T Int J Food Microbiol; 2013 Apr; 163(1):41-6. PubMed ID: 23500614 [TBL] [Abstract][Full Text] [Related]
27. Enumeration of thermotolerant Campylobacter spp. from poultry carcasses at the end of the slaughter-line. Johannessen GS; Johnsen G; Okland M; Cudjoe KS; Hofshagen M Lett Appl Microbiol; 2007 Jan; 44(1):92-7. PubMed ID: 17209821 [TBL] [Abstract][Full Text] [Related]
28. The effect of different isolation protocols on detection and molecular characterization of Campylobacter from poultry. Ugarte-Ruiz M; Wassenaar TM; Gómez-Barrero S; Porrero MC; Navarro-Gonzalez N; Domínguez L Lett Appl Microbiol; 2013 Nov; 57(5):427-35. PubMed ID: 23837671 [TBL] [Abstract][Full Text] [Related]
29. Campylobacter spp. contamination of chicken carcasses during processing in relation to flock colonisation. Allen VM; Bull SA; Corry JE; Domingue G; Jørgensen F; Frost JA; Whyte R; Gonzalez A; Elviss N; Humphrey TJ Int J Food Microbiol; 2007 Jan; 113(1):54-61. PubMed ID: 17007949 [TBL] [Abstract][Full Text] [Related]
30. Metagenomic analysis of isolation methods of a targeted microbe, Campylobacter jejuni, from chicken feces with high microbial contamination. Kim J; Guk JH; Mun SH; An JU; Song H; Kim J; Ryu S; Jeon B; Cho S Microbiome; 2019 Apr; 7(1):67. PubMed ID: 31027515 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of ISO 10272:2006 standard versus alternative enrichment and plating combinations for enumeration and detection of Campylobacter in chicken meat. Habib I; Uyttendaele M; De Zutter L Food Microbiol; 2011 Sep; 28(6):1117-23. PubMed ID: 21645809 [TBL] [Abstract][Full Text] [Related]
32. Eight enrichment broths for the isolation of Campylobacter jejuni from inoculated suspensions and ground pork. Kim SA; Lee YM; Hwang IG; Kang DH; Woo GJ; Rhee MS Lett Appl Microbiol; 2009 Nov; 49(5):620-6. PubMed ID: 19780965 [TBL] [Abstract][Full Text] [Related]
33. Comparison of optical density-based growth kinetics for pure culture Bodie AR; Rothrock MJ; Ricke SC J Environ Sci Health B; 2023; 58(11):671-678. PubMed ID: 37784245 [No Abstract] [Full Text] [Related]
34. Investigating the Association Between the Caecal Microbiomes of Broilers and Sakaridis I; Ellis RJ; Cawthraw SA; van Vliet AHM; Stekel DJ; Penell J; Chambers M; La Ragione RM; Cook AJ Front Microbiol; 2018; 9():927. PubMed ID: 29872425 [TBL] [Abstract][Full Text] [Related]
35. Screening for lactic acid bacteria capable of inhibiting Campylobacter jejuni in in vitro simulations of the broiler chicken caecal environment. Robyn J; Rasschaert G; Messens W; Pasmans F; Heyndrickx M Benef Microbes; 2012 Dec; 3(4):299-308. PubMed ID: 23234730 [TBL] [Abstract][Full Text] [Related]
36. Prevalence and risk factors for Salmonella spp. and Campylobacter spp. caecal colonization in broiler chicken and turkey flocks slaughtered in Quebec, Canada. Arsenault J; Letellier A; Quessy S; Normand V; Boulianne M Prev Vet Med; 2007 Oct; 81(4):250-64. PubMed ID: 17532069 [TBL] [Abstract][Full Text] [Related]
37. Restoring the selectivity of Bolton broth during enrichment for Campylobacter spp. from raw chicken. Moran L; Kelly C; Cormican M; McGettrick S; Madden RH Lett Appl Microbiol; 2011 Jun; 52(6):614-8. PubMed ID: 21488911 [TBL] [Abstract][Full Text] [Related]
38. Comparison of basal broth media for the optimal laboratory recovery of Campylobacter jejuni and Campylobacter coli. Moore JE Ir J Med Sci; 2000; 169(3):187-9. PubMed ID: 11272874 [TBL] [Abstract][Full Text] [Related]