These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 27052057)

  • 1. Lytic Polysaccharide Monooxygenases ScLPMO10B and ScLPMO10C Are Stable in Ionic Liquids As Determined by Molecular Simulations.
    Sprenger KG; Choudhury A; Kaar JL; Pfaendtner J
    J Phys Chem B; 2016 Apr; 120(16):3863-72. PubMed ID: 27052057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural diversity of lytic polysaccharide monooxygenases.
    Vaaje-Kolstad G; Forsberg Z; Loose JS; Bissaro B; Eijsink VG
    Curr Opin Struct Biol; 2017 Jun; 44():67-76. PubMed ID: 28086105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases.
    Vermaas JV; Crowley MF; Beckham GT; Payne CM
    J Phys Chem B; 2015 May; 119(20):6129-43. PubMed ID: 25785779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a lytic polysaccharide monooxygenase from Aspergillus fumigatus and an engineered thermostable variant.
    Lo Leggio L; Weihe CD; Poulsen JN; Sweeney M; Rasmussen F; Lin J; De Maria L; Wogulis M
    Carbohydr Res; 2018 Nov; 469():55-59. PubMed ID: 30296642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown.
    Monclaro AV; Filho EXF
    Int J Biol Macromol; 2017 Sep; 102():771-778. PubMed ID: 28450248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H
    Bissaro B; Røhr ÅK; Müller G; Chylenski P; Skaugen M; Forsberg Z; Horn SJ; Vaaje-Kolstad G; Eijsink VGH
    Nat Chem Biol; 2017 Oct; 13(10):1123-1128. PubMed ID: 28846668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent insights into lytic polysaccharide monooxygenases (LPMOs).
    Tandrup T; Frandsen KEH; Johansen KS; Berrin JG; Lo Leggio L
    Biochem Soc Trans; 2018 Dec; 46(6):1431-1447. PubMed ID: 30381341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of linker conformation on performance and stability of a two-domain lytic polysaccharide monooxygenase.
    Forsberg Z; Stepnov AA; Tesei G; Wang Y; Buchinger E; Kristiansen SK; Aachmann FL; Arleth L; Eijsink VGH; Lindorff-Larsen K; Courtade G
    J Biol Chem; 2023 Nov; 299(11):105262. PubMed ID: 37734553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations.
    Bertini L; Breglia R; Lambrughi M; Fantucci P; De Gioia L; Borsari M; Sola M; Bortolotti CA; Bruschi M
    Inorg Chem; 2018 Jan; 57(1):86-97. PubMed ID: 29232119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water.
    Liu H; Sale KL; Simmons BA; Singh S
    J Phys Chem B; 2011 Sep; 115(34):10251-8. PubMed ID: 21827163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence and Structural Analysis of AA9 and AA10 LPMOs: An Insight into the Basis of Substrate Specificity and Regioselectivity.
    Zhou X; Qi X; Huang H; Zhu H
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31533304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights from semi-oriented EPR spectroscopy studies into the interaction of lytic polysaccharide monooxygenases with cellulose.
    Ciano L; Paradisi A; Hemsworth GR; Tovborg M; Davies GJ; Walton PH
    Dalton Trans; 2020 Mar; 49(11):3413-3422. PubMed ID: 32125319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and industrial applications of lytic polysaccharide mono-oxygenases.
    Johansen KS
    Biochem Soc Trans; 2016 Feb; 44(1):143-9. PubMed ID: 26862199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of cellulase in the non-natural ionic liquid environments to enhance cellulase activity and functional stability.
    Zhou M; Ju X; Li L; Yan L; Xu X; Chen J
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2483-2492. PubMed ID: 30685813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure.
    Villares A; Moreau C; Bennati-Granier C; Garajova S; Foucat L; Falourd X; Saake B; Berrin JG; Cathala B
    Sci Rep; 2017 Jan; 7():40262. PubMed ID: 28071716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-aqueous homogenous biocatalytic conversion of polysaccharides in ionic liquids using chemically modified glucosidase.
    Brogan APS; Bui-Le L; Hallett JP
    Nat Chem; 2018 Aug; 10(8):859-865. PubMed ID: 29941904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry.
    Westereng B; Arntzen MØ; Agger JW; Vaaje-Kolstad G; Eijsink VGH
    Methods Mol Biol; 2017; 1588():71-92. PubMed ID: 28417362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan.
    Jagadeeswaran G; Gainey L; Prade R; Mort AJ
    Appl Microbiol Biotechnol; 2016 May; 100(10):4535-47. PubMed ID: 27075737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The framework of polysaccharide monooxygenase structure and chemistry.
    Span EA; Marletta MA
    Curr Opin Struct Biol; 2015 Dec; 35():93-9. PubMed ID: 26615470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct Interaction of Lytic Polysaccharide Monooxygenase with Cellulose Revealed by Computational and Biochemical Studies.
    Zhou H; Zhang Y; Li T; Tan H; Li G; Yin H
    J Phys Chem Lett; 2020 May; 11(10):3987-3992. PubMed ID: 32352790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.