BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 27052170)

  • 1. The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency.
    Guarás A; Perales-Clemente E; Calvo E; Acín-Pérez R; Loureiro-Lopez M; Pujol C; Martínez-Carrascoso I; Nuñez E; García-Marqués F; Rodríguez-Hernández MA; Cortés A; Diaz F; Pérez-Martos A; Moraes CT; Fernández-Silva P; Trifunovic A; Navas P; Vazquez J; Enríquez JA
    Cell Rep; 2016 Apr; 15(1):197-209. PubMed ID: 27052170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coenzyme Q biosynthesis and its role in the respiratory chain structure.
    Alcázar-Fabra M; Navas P; Brea-Calvo G
    Biochim Biophys Acta; 2016 Aug; 1857(8):1073-1078. PubMed ID: 26970214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coenzyme Q biosynthesis in health and disease.
    Acosta MJ; Vazquez Fonseca L; Desbats MA; Cerqua C; Zordan R; Trevisson E; Salviati L
    Biochim Biophys Acta; 2016 Aug; 1857(8):1079-1085. PubMed ID: 27060254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyruvate and hydroxycitrate/carnitine may synergize to promote reverse electron transport in hepatocyte mitochondria, effectively 'uncoupling' the oxidation of fatty acids.
    McCarty MF; Gustin JC
    Med Hypotheses; 1999 May; 52(5):407-16. PubMed ID: 10416948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. nde1 deletion improves mitochondrial DNA maintenance in Saccharomyces cerevisiae coenzyme Q mutants.
    Gomes F; Tahara EB; Busso C; Kowaltowski AJ; Barros MH
    Biochem J; 2013 Feb; 449(3):595-603. PubMed ID: 23116202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coenzyme Q2 induced p53-dependent apoptosis.
    Esaka Y; Nagahara Y; Hasome Y; Nishio R; Ikekita M
    Biochim Biophys Acta; 2005 Jun; 1724(1-2):49-58. PubMed ID: 15905035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Complex I: structure, function, and implications in neurodegeneration.
    Lenaz G; Baracca A; Fato R; Genova ML; Solaini G
    Ital J Biochem; 2006; 55(3-4):232-53. PubMed ID: 17274529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial production of oxygen radical species and the role of Coenzyme Q as an antioxidant.
    Genova ML; Pich MM; Biondi A; Bernacchia A; Falasca A; Bovina C; Formiggini G; Parenti Castelli G; Lenaz G
    Exp Biol Med (Maywood); 2003 May; 228(5):506-13. PubMed ID: 12709577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid HPLC method reveals dynamic shifts in coenzyme Q redox state.
    Vitvitsky V; Kumar R; Diessl J; Hanna DA; Banerjee R
    J Biol Chem; 2024 May; 300(5):107301. PubMed ID: 38641068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual involvement of coenzyme Q10 in redox signaling and inhibition of death signaling in the rat heart mitochondria.
    Yamamura T; Otani H; Nakao Y; Hattori R; Osako M; Imamura H; Das DK
    Antioxid Redox Signal; 2001 Feb; 3(1):103-12. PubMed ID: 11291590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study into alterations of coenzyme Q redox status in ageing pigs, mice, and worms.
    Onur S; Niklowitz P; Fischer A; Metges CC; Grune T; Menke T; Rimbach G; Döring F
    Biofactors; 2014; 40(3):346-54. PubMed ID: 24578032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coenzyme Q functionalized CdTe/ZnS quantum dots for reactive oxygen species (ROS) imaging.
    Qin LX; Ma W; Li DW; Li Y; Chen X; Kraatz HB; James TD; Long YT
    Chemistry; 2011 May; 17(19):5262-71. PubMed ID: 21503990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of coenzyme Q in eukaryotes.
    Kawamukai M
    Biosci Biotechnol Biochem; 2016; 80(1):23-33. PubMed ID: 26183239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can All Major ROS Forming Sites of the Respiratory Chain Be Activated By High FADH
    Speijer D
    Bioessays; 2019 Jan; 41(1):e1800180. PubMed ID: 30512221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex II ambiguities-FADH
    Gnaiger E
    J Biol Chem; 2024 Jan; 300(1):105470. PubMed ID: 38118236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of mitochondrial electron transport complex I in coenzyme Q1 reduction by intact pulmonary arterial endothelial cells and the effect of hyperoxia.
    Merker MP; Audi SH; Lindemer BJ; Krenz GS; Bongard RD
    Am J Physiol Lung Cell Mol Physiol; 2007 Sep; 293(3):L809-19. PubMed ID: 17601793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence.
    Danylovych HV
    Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.