These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 27052472)

  • 1. Effect of environment on iodine oxidation state and reactivity with aluminum.
    Smith DK; McCollum J; Pantoya ML
    Phys Chem Chem Phys; 2016 Apr; 18(16):11243-50. PubMed ID: 27052472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction Kinetics and Combustion Dynamics of I4O9 and Aluminum Mixtures.
    Smith DK; Pantoya ML; Parkey JS; Kesmez M
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27842354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Polar Environments on the Aluminum Oxide Shell Surrounding Aluminum Particles: Simulations of Surface Hydroxyl Bonding and Charge.
    Padhye R; Aquino AJ; Tunega D; Pantoya ML
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13926-33. PubMed ID: 27175545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passivated iodine pentoxide oxidizer for potential biocidal nanoenergetic applications.
    Feng J; Jian G; Liu Q; Zachariah MR
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8875-80. PubMed ID: 23988006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of metal iodates from an energetic salt.
    Shancita I; Miller KK; Silverstein PD; Kalman J; Pantoya ML
    RSC Adv; 2020 Apr; 10(24):14403-14409. PubMed ID: 35498500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Molecule Catalysis Revealed: Elucidating the Mechanistic Framework for the Formation and Growth of Atmospheric Iodine Oxide Aerosols in Gas-Phase and Aqueous Surface Environments.
    Kumar M; Saiz-Lopez A; Francisco JS
    J Am Chem Soc; 2018 Nov; 140(44):14704-14716. PubMed ID: 30338993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion.
    McCollum J; Pantoya ML; Iacono ST
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18742-9. PubMed ID: 26263844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking molecular level chemistry to macroscopic combustion behavior for nano-energetic materials with halogen containing oxides.
    Farley CW; Pantoya ML; Losada M; Chaudhuri S
    J Chem Phys; 2013 Aug; 139(7):074701. PubMed ID: 23968101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO3, (IO)2, I2O3, I2O4 and I2O5) of importance in the atmosphere.
    Kaltsoyannis N; Plane JM
    Phys Chem Chem Phys; 2008 Apr; 10(13):1723-33. PubMed ID: 18350176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus.
    Camilleri J; Sorrentino F; Damidot D
    Dent Mater; 2013 May; 29(5):580-93. PubMed ID: 23537569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption and exchange reactions of iodine molecules at the alumina surface: modelling alumina-iodine reaction mechanisms.
    Miller KK; de Rezende A; Aquino AJA; Tunega D; Pantoya ML
    Phys Chem Chem Phys; 2022 May; 24(19):11501-11509. PubMed ID: 35403629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the Chemistry of Iodine New Particle Formation: The Role of Iodine Oxides and the Source of Iodic Acid.
    Gómez Martín JC; Lewis TR; James AD; Saiz-Lopez A; Plane JMC
    J Am Chem Soc; 2022 Jun; 144(21):9240-9253. PubMed ID: 35604404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of iodine oxide particle formation.
    Gómez Martín JC; Gálvez O; Baeza-Romero MT; Ingham T; Plane JM; Blitz MA
    Phys Chem Chem Phys; 2013 Oct; 15(37):15612-22. PubMed ID: 23942624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explorations of new second-order nonlinear optical materials in the ternary rubidium iodate system: noncentrosymmetric β-RbIO3(HIO3)2 and centrosymmetric Rb3(IO3)3(I2O5)(HIO3)4(H2O).
    Xu X; Yang BP; Huang C; Mao JG
    Inorg Chem; 2014 Feb; 53(3):1756-63. PubMed ID: 24428782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion Mobility-Mass Spectrometry of Iodine Pentoxide-Iodic Acid Hybrid Cluster Anions in Dry and Humidified Atmospheres.
    Ahonen L; Li C; Kubečka J; Iyer S; Vehkamäki H; Petäjä T; Kulmala M; Hogan CJ
    J Phys Chem Lett; 2019 Apr; 10(8):1935-1941. PubMed ID: 30939018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal Iodate-Based Energetic Composites and Their Combustion and Biocidal Performance.
    Wang H; Jian G; Zhou W; DeLisio JB; Lee VT; Zachariah MR
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17363-70. PubMed ID: 26161906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon Nanoparticles for the Reactivity and Energetic Density Enhancement of Energetic-Biocidal Mesoparticle Composites.
    Ghildiyal P; Ke X; Biswas P; Nava G; Schwan J; Xu F; Kline DJ; Wang H; Mangolini L; Zachariah MR
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):458-467. PubMed ID: 33373186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the Reactivity of Perfluoropolyether-Functionalized Aluminum Nanoparticles by the Reaction Interface Fuel-Oxidizer Ratio.
    Wu C; Nie J; Li S; Wang W; Pan Q; Guo X
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Promises from an Old Friend: Iodine-Rich Compounds as Prospective Energetic Biocidal Agents.
    Chang J; Zhao G; Zhao X; He C; Pang S; Shreeve JM
    Acc Chem Res; 2021 Jan; 54(2):332-343. PubMed ID: 33300791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro- and Nanoscale Energetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators.
    Kim SB; Kim KJ; Cho MH; Kim JH; Kim KT; Kim SH
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9405-12. PubMed ID: 27007287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.