These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27052759)

  • 1. Cooperative Photoredox and Asymmetric Catalysis.
    Huo H; Meggersa E
    Chimia (Aarau); 2016; 70(3):186-91. PubMed ID: 27052759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric photoredox transition-metal catalysis activated by visible light.
    Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E
    Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Radical-Radical Cross-Coupling through Visible-Light-Activated Iridium Catalysis.
    Wang C; Qin J; Shen X; Riedel R; Harms K; Meggers E
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):685-8. PubMed ID: 26629641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Catalysis with Organic Azides and Diazo Compounds Initiated by Photoinduced Electron Transfer.
    Huang X; Webster RD; Harms K; Meggers E
    J Am Chem Soc; 2016 Sep; 138(38):12636-42. PubMed ID: 27577929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic Asymmetric Dehydrogenative Cross-Coupling between Two C(sp3)-H Groups Catalyzed by a Chiral-at-Metal Rhodium Complex.
    Tan Y; Yuan W; Gong L; Meggers E
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):13045-8. PubMed ID: 26351096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Merger of visible light induced oxidation and enantioselective alkylation with a chiral iridium catalyst.
    Wang C; Zheng Y; Huo H; Röse P; Zhang L; Harms K; Hilt G; Meggers E
    Chemistry; 2015 May; 21(20):7355-9. PubMed ID: 25832794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic Asymmetric Synthesis of Fluoroalkyl-Containing Compounds by Three-Component Photoredox Chemistry.
    Ma J; Xie X; Meggers E
    Chemistry; 2018 Jan; 24(1):259-265. PubMed ID: 29105857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bis-Cyclometalated Indazole Chiral-at-Rhodium Catalyst for Asymmetric Photoredox Cyanoalkylations.
    Steinlandt PS; Zuo W; Harms K; Meggers E
    Chemistry; 2019 Dec; 25(67):15333-15340. PubMed ID: 31541505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic, Enantioselective Addition of Alkyl Radicals to Alkenes via Visible-Light-Activated Photoredox Catalysis with a Chiral Rhodium Complex.
    Huo H; Harms K; Meggers E
    J Am Chem Soc; 2016 Jun; 138(22):6936-9. PubMed ID: 27218134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-neutral α-allylation of amines by combining palladium catalysis and visible-light photoredox catalysis.
    Xuan J; Zeng TT; Feng ZJ; Deng QH; Chen JR; Lu LQ; Xiao WJ; Alper H
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1625-8. PubMed ID: 25504920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric [3+2] Photocycloadditions of Cyclopropanes with Alkenes or Alkynes through Visible-Light Excitation of Catalyst-Bound Substrates.
    Huang X; Lin J; Shen T; Harms K; Marchini M; Ceroni P; Meggers E
    Angew Chem Int Ed Engl; 2018 May; 57(19):5454-5458. PubMed ID: 29543370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual catalysis sees the light: combining photoredox with organo-, acid, and transition-metal catalysis.
    Hopkinson MN; Sahoo B; Li JL; Glorius F
    Chemistry; 2014 Apr; 20(14):3874-86. PubMed ID: 24596102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent synthetic additions to the visible light photoredox catalysis toolbox.
    Angnes RA; Li Z; Correia CR; Hammond GB
    Org Biomol Chem; 2015 Sep; 13(35):9152-67. PubMed ID: 26242759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric Photocatalysis Enabled by Chiral Organocatalysts.
    Yao W; Bergamino EAB; Ngai MY
    ChemCatChem; 2022 Jan; 14(1):. PubMed ID: 36204304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer photoredox catalysis: intramolecular radical addition to indoles and pyrroles.
    Tucker JW; Narayanam JM; Krabbe SW; Stephenson CR
    Org Lett; 2010 Jan; 12(2):368-71. PubMed ID: 20014770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Enantioselective Radical Transformations Enabled by Visible Light.
    Saha D
    Chem Asian J; 2020 Jul; 15(14):2129-2152. PubMed ID: 32463981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoredox asymmetric catalytic enantioconvergent substitution of 3-chlorooxindoles.
    Zeng G; Li Y; Qiao B; Zhao X; Jiang Z
    Chem Commun (Camb); 2019 Sep; 55(76):11362-11365. PubMed ID: 31478552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective photoredox catalysis enabled by proton-coupled electron transfer: development of an asymmetric aza-pinacol cyclization.
    Rono LJ; Yayla HG; Wang DY; Armstrong MF; Knowles RR
    J Am Chem Soc; 2013 Nov; 135(47):17735-8. PubMed ID: 24215561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective, Catalytic Trichloromethylation through Visible-Light-Activated Photoredox Catalysis with a Chiral Iridium Complex.
    Huo H; Wang C; Harms K; Meggers E
    J Am Chem Soc; 2015 Aug; 137(30):9551-4. PubMed ID: 26193928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.