These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27052759)

  • 21. Recent Development of Bis-Cyclometalated Chiral-at-Iridium and Rhodium Complexes for Asymmetric Catalysis.
    Dey P; Rai P; Maji B
    ACS Org Inorg Au; 2022 Apr; 2(2):99-125. PubMed ID: 36855455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric catalysis activated by visible light.
    Meggers E
    Chem Commun (Camb); 2015 Feb; 51(16):3290-301. PubMed ID: 25572775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Asymmetric [3 + 2] Photocycloaddition of β-Keto Esters and Vinyl Azides by Dual Photoredox/Nickel Catalysis.
    Zhou XS; Zhang Z; Qu WY; Liu XP; Xiao WJ; Jiang M; Chen JR
    J Am Chem Soc; 2023 Jun; 145(22):12233-12243. PubMed ID: 37222742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tin-free radical cyclization reactions initiated by visible light photoredox catalysis.
    Tucker JW; Nguyen JD; Narayanam JM; Krabbe SW; Stephenson CR
    Chem Commun (Camb); 2010 Jul; 46(27):4985-7. PubMed ID: 20512181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.
    Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ
    J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Independence from the Sequence of Single-Electron Transfer of Photoredox Process in Redox-Neutral Asymmetric Bond-Forming Reaction.
    Kizu T; Uraguchi D; Ooi T
    J Org Chem; 2016 Aug; 81(16):6953-8. PubMed ID: 27176596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asymmetric fluorocyclizations of alkenes.
    Wolstenhulme JR; Gouverneur V
    Acc Chem Res; 2014 Dec; 47(12):3560-70. PubMed ID: 25379791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Rhodium Catalyst Superior to Iridium Congeners for Enantioselective Radical Amination Activated by Visible Light.
    Shen X; Harms K; Marsch M; Meggers E
    Chemistry; 2016 Jun; 22(27):9102-5. PubMed ID: 27145893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Charge Accumulation and Multi-Electron Photoredox Chemistry with a Sensitizer-Catalyst-Sensitizer Triad.
    Nomrowski J; Guo X; Wenger OS
    Chemistry; 2018 Sep; 24(53):14084-14087. PubMed ID: 30091488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Asymmetric photoredox catalytic formal de Mayo reaction enabled by sensitization-initiated electron transfer.
    Sun X; Liu Y; Yin Y; Ban X; Zhao X; Jiang Z
    Nat Chem; 2024 Jul; 16(7):1169-1176. PubMed ID: 38565977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions.
    Majek M; Jacobi von Wangelin A
    Acc Chem Res; 2016 Oct; 49(10):2316-2327. PubMed ID: 27669097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Merging Visible-Light Photoredox and Chiral Phosphate Catalysis for Asymmetric Friedel-Crafts Reaction with in Situ Generation of N-Acyl Imines.
    Shen ML; Shen Y; Wang PS
    Org Lett; 2019 May; 21(9):2993-2997. PubMed ID: 30977663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic Asymmetric Csp3 -H Functionalization under Photoredox Conditions by Radical Translocation and Stereocontrolled Alkene Addition.
    Wang C; Harms K; Meggers E
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13495-13498. PubMed ID: 27667745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.
    Li YY; Yu SL; Shen WY; Gao JX
    Acc Chem Res; 2015 Sep; 48(9):2587-98. PubMed ID: 26301426
    [TBL] [