These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Designed nucleases for targeted genome editing. Lee J; Chung JH; Kim HM; Kim DW; Kim H Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767 [TBL] [Abstract][Full Text] [Related]
25. Hematopoietic stem cell gene therapy: The optimal use of lentivirus and gene editing approaches. Lamsfus-Calle A; Daniel-Moreno A; Ureña-Bailén G; Raju J; Antony JS; Handgretinger R; Mezger M Blood Rev; 2020 Mar; 40():100641. PubMed ID: 31761379 [TBL] [Abstract][Full Text] [Related]
27. Editing the Epigenome: Overview, Open Questions, and Directions of Future Development. Rots MG; Jeltsch A Methods Mol Biol; 2018; 1767():3-18. PubMed ID: 29524127 [TBL] [Abstract][Full Text] [Related]
28. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. Jasin M; Haber JE DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202 [TBL] [Abstract][Full Text] [Related]
30. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Zhang WW; Matlashewski G mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745 [TBL] [Abstract][Full Text] [Related]
31. [Current advances and future prospects of genome editing technology in the field of biomedicine.]. Sakuma T Clin Calcium; 2017; 27(12):1788-1793. PubMed ID: 29179174 [TBL] [Abstract][Full Text] [Related]
33. Salient Features of Endonuclease Platforms for Therapeutic Genome Editing. Certo MT; Morgan RA Mol Ther; 2016 Mar; 24(3):422-9. PubMed ID: 26796671 [TBL] [Abstract][Full Text] [Related]
34. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces. Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561 [No Abstract] [Full Text] [Related]
35. CRISPR-cas System as a Genome Engineering Platform: Applications in Biomedicine and Biotechnology. Hashemi A Curr Gene Ther; 2018; 18(2):115-124. PubMed ID: 29473500 [TBL] [Abstract][Full Text] [Related]
36. Exogenous gene integration mediated by genome editing technologies in zebrafish. Morita H; Taimatsu K; Yanagi K; Kawahara A Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984 [TBL] [Abstract][Full Text] [Related]
37. Ma X; Wong AS; Tam HY; Tsui SY; Chung DL; Feng B Zool Res; 2018 Mar; 39(2):58-71. PubMed ID: 29515088 [TBL] [Abstract][Full Text] [Related]
38. Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks. Paix A; Folkmann A; Goldman DH; Kulaga H; Grzelak MJ; Rasoloson D; Paidemarry S; Green R; Reed RR; Seydoux G Proc Natl Acad Sci U S A; 2017 Dec; 114(50):E10745-E10754. PubMed ID: 29183983 [TBL] [Abstract][Full Text] [Related]
39. [Genome Editing Tools and their Application in Experimental Ophthalmology]. Yanik M; Wende W; Stieger K Klin Monbl Augenheilkd; 2017 Mar; 234(3):329-334. PubMed ID: 28114701 [TBL] [Abstract][Full Text] [Related]
40. Precise A•T to G•C base editing in the zebrafish genome. Qin W; Lu X; Liu Y; Bai H; Li S; Lin S BMC Biol; 2018 Nov; 16(1):139. PubMed ID: 30458760 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]