These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 27053838)
41. Two novel high performing composite PMMA-CaP cements for vertebroplasty: An ex vivo animal study. Aghyarian S; Hu X; Lieberman IH; Kosmopoulos V; Kim HK; Rodrigues DC J Mech Behav Biomed Mater; 2015 Oct; 50():290-8. PubMed ID: 26177392 [TBL] [Abstract][Full Text] [Related]
42. Reduction of cement leakage by sequential PMMA application in a vertebroplasty model. Hoppe S; Wangler S; Aghayev E; Gantenbein B; Boger A; Benneker LM Eur Spine J; 2016 Nov; 25(11):3450-3455. PubMed ID: 25841359 [TBL] [Abstract][Full Text] [Related]
43. A clinical comparative study on low versus medium viscosity polymethylmetacrylate bone cement in percutaneous vertebroplasty: viscosity associated with cement leakage. Nieuwenhuijse MJ; Muijs SP; van Erkel AR; Dijkstra SP Spine (Phila Pa 1976); 2010 Sep; 35(20):E1037-44. PubMed ID: 20802393 [TBL] [Abstract][Full Text] [Related]
44. Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate. Mori A; Ohtsuki C; Miyazaki T; Sugino A; Tanihara M; Kuramoto K; Osaka A J Mater Sci Mater Med; 2005 Aug; 16(8):713-8. PubMed ID: 15965740 [TBL] [Abstract][Full Text] [Related]
45. Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture. Tomita S; Kin A; Yazu M; Abe M J Orthop Sci; 2003; 8(2):192-7. PubMed ID: 12665956 [TBL] [Abstract][Full Text] [Related]
46. [Experimental study of percutaneous vertebroplasty with a novel bone void filling container system]. Wang TP; Zhang KB; Zheng ZM; Liu H; Yu BS Zhonghua Yi Xue Za Zhi; 2011 Apr; 91(15):1041-6. PubMed ID: 21609639 [TBL] [Abstract][Full Text] [Related]
47. Feasibility study of using viscoplastic bone cement for vertebroplasty: an in vivo clinical trial and in vitro cadaveric biomechanical examination. Lin SW; Chiang CK; Yang CL; Wang JL Spine (Phila Pa 1976); 2010 May; 35(10):E385-91. PubMed ID: 20393389 [TBL] [Abstract][Full Text] [Related]
48. In silico evaluation of stress distribution after vertebral body augmentation with conventional acrylics, composites and glass polyalkenoate cements. Dickey BT; Tyndyk MA; Doman DA; Boyd D J Mech Behav Biomed Mater; 2012 Jan; 5(1):283-90. PubMed ID: 22100103 [TBL] [Abstract][Full Text] [Related]
49. Early histologic changes following polymethylmethacrylate injection (vertebroplasty) in rabbit lumbar vertebrae. Urrutia J; Bono CM; Mery P; Rojas C Spine (Phila Pa 1976); 2008 Apr; 33(8):877-82. PubMed ID: 18404107 [TBL] [Abstract][Full Text] [Related]
50. Staged-injection procedure to prevent cement leakage during vertebroplasty: an in vitro study. Wu ZX; Liu D; Wan SY; Sang HX; Lei W J Surg Res; 2010 Dec; 164(2):e253-6. PubMed ID: 20934724 [TBL] [Abstract][Full Text] [Related]
51. Suitability of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation: a controlled, randomized, clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate. Blattert TR; Jestaedt L; Weckbach A Spine (Phila Pa 1976); 2009 Jan; 34(2):108-14. PubMed ID: 19139662 [TBL] [Abstract][Full Text] [Related]
52. Calcium-phosphate and polymethylmethacrylate cement in long-term outcome after kyphoplasty of painful osteoporotic vertebral fractures. Grafe IA; Baier M; Nöldge G; Weiss C; Da Fonseca K; Hillmeier J; Libicher M; Rudofsky G; Metzner C; Nawroth P; Meeder PJ; Kasperk C Spine (Phila Pa 1976); 2008 May; 33(11):1284-90. PubMed ID: 18469705 [TBL] [Abstract][Full Text] [Related]
53. Hip screw augmentation with an in situ-setting calcium phosphate cement: an in vitro biomechanical analysis. Moore DC; Frankenburg EP; Goulet JA; Goldstein SA J Orthop Trauma; 1997 Nov; 11(8):577-83. PubMed ID: 9415864 [TBL] [Abstract][Full Text] [Related]
54. The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement. Persson C; López A; Fathali H; Hoess A; Rojas R; Ott MK; Hilborn J; Engqvist H Biomatter; 2016; 6(1):e1133394. PubMed ID: 26727581 [TBL] [Abstract][Full Text] [Related]
55. Adjacent vertebral body fracture following vertebroplasty with polymethylmethacrylate or calcium phosphate cement: biomechanical evaluation of the cadaveric spine. Nouda S; Tomita S; Kin A; Kawahara K; Kinoshita M Spine (Phila Pa 1976); 2009 Nov; 34(24):2613-8. PubMed ID: 19910764 [TBL] [Abstract][Full Text] [Related]
56. Biomechanical comparison of transpedicular versus extrapedicular vertebroplasty using polymethylmethacrylate. Erkan S; Wu C; Mehbod AA; Cho W; Transfeldt EE J Spinal Disord Tech; 2010 May; 23(3):180-5. PubMed ID: 20065863 [TBL] [Abstract][Full Text] [Related]
57. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Liebschner MA; Rosenberg WS; Keaveny TM Spine (Phila Pa 1976); 2001 Jul; 26(14):1547-54. PubMed ID: 11462084 [TBL] [Abstract][Full Text] [Related]
58. Preliminary study on biomechanics of vertebroplasty: a computational fluid dynamics and solid mechanics combined approach. Teo J; Wang SC; Teoh SH Spine (Phila Pa 1976); 2007 May; 32(12):1320-8. PubMed ID: 17515821 [TBL] [Abstract][Full Text] [Related]
59. Intravertebral pressure during vertebroplasty and balloon kyphoplasty: an in vitro study. Weisskopf M; Ohnsorge JA; Niethard FU Spine (Phila Pa 1976); 2008 Jan; 33(2):178-82. PubMed ID: 18197103 [TBL] [Abstract][Full Text] [Related]
60. Dose-dependent epidural leakage of polymethylmethacrylate after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures. Ryu KS; Park CK; Kim MC; Kang JK J Neurosurg; 2002 Jan; 96(1 Suppl):56-61. PubMed ID: 11795714 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]