These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 27054327)
1. SWATH2stats: An R/Bioconductor Package to Process and Convert Quantitative SWATH-MS Proteomics Data for Downstream Analysis Tools. Blattmann P; Heusel M; Aebersold R PLoS One; 2016; 11(4):e0153160. PubMed ID: 27054327 [TBL] [Abstract][Full Text] [Related]
2. Automated SWATH Data Analysis Using Targeted Extraction of Ion Chromatograms. Röst HL; Aebersold R; Schubert OT Methods Mol Biol; 2017; 1550():289-307. PubMed ID: 28188537 [TBL] [Abstract][Full Text] [Related]
3. A Data Analysis Protocol for Quantitative Data-Independent Acquisition Proteomics. Pietilä S; Suomi T; Aakko J; Elo LL Methods Mol Biol; 2019; 1871():455-465. PubMed ID: 30276755 [TBL] [Abstract][Full Text] [Related]
4. QuantPipe: A User-Friendly Pipeline Software Tool for DIA Data Analysis Based on the OpenSWATH-PyProphet-TRIC Workflow. Wang D; Gan G; Chen X; Zhong CQ J Proteome Res; 2021 Jan; 20(1):1096-1102. PubMed ID: 33091296 [TBL] [Abstract][Full Text] [Related]
5. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Choi M; Chang CY; Clough T; Broudy D; Killeen T; MacLean B; Vitek O Bioinformatics; 2014 Sep; 30(17):2524-6. PubMed ID: 24794931 [TBL] [Abstract][Full Text] [Related]
6. Democratizing data-independent acquisition proteomics analysis on public cloud infrastructures via the Galaxy framework. Fahrner M; Föll MC; Grüning BA; Bernt M; Röst H; Schilling O Gigascience; 2022 Feb; 11():. PubMed ID: 35166338 [TBL] [Abstract][Full Text] [Related]
7. Proteomic Analysis of Human Neural Stem Cell Differentiation by SWATH-MS. Tyleckova J; Cervenka J; Poliakh I; Novak J; Kepkova KV; Skalnikova HK; Vodicka P Methods Mol Biol; 2022; 2520():335-360. PubMed ID: 35579839 [TBL] [Abstract][Full Text] [Related]
15. Building high-quality assay libraries for targeted analysis of SWATH MS data. Schubert OT; Gillet LC; Collins BC; Navarro P; Rosenberger G; Wolski WE; Lam H; Amodei D; Mallick P; MacLean B; Aebersold R Nat Protoc; 2015 Mar; 10(3):426-41. PubMed ID: 25675208 [TBL] [Abstract][Full Text] [Related]
16. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification. Tu C; Shen S; Sheng Q; Shyr Y; Qu J J Proteomics; 2017 Jan; 152():276-282. PubMed ID: 27903464 [TBL] [Abstract][Full Text] [Related]
17. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020. Zhang F; Ge W; Ruan G; Cai X; Guo T Proteomics; 2020 Sep; 20(17-18):e1900276. PubMed ID: 32275110 [TBL] [Abstract][Full Text] [Related]
18. Data Independent Acquisition analysis in ProHits 4.0. Liu G; Knight JD; Zhang JP; Tsou CC; Wang J; Lambert JP; Larsen B; Tyers M; Raught B; Bandeira N; Nesvizhskii AI; Choi H; Gingras AC J Proteomics; 2016 Oct; 149():64-68. PubMed ID: 27132685 [TBL] [Abstract][Full Text] [Related]
19. Optimization of Acquisition and Data-Processing Parameters for Improved Proteomic Quantification by Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectrometry. Li S; Cao Q; Xiao W; Guo Y; Yang Y; Duan X; Shui W J Proteome Res; 2017 Feb; 16(2):738-747. PubMed ID: 27995803 [TBL] [Abstract][Full Text] [Related]
20. Implementing the reuse of public DIA proteomics datasets: from the PRIDE database to Expression Atlas. Walzer M; García-Seisdedos D; Prakash A; Brack P; Crowther P; Graham RL; George N; Mohammed S; Moreno P; Papatheodorou I; Hubbard SJ; Vizcaíno JA Sci Data; 2022 Jun; 9(1):335. PubMed ID: 35701420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]