These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 27054373)
1. Tubelike Gold Sphere-Attapulgite Nanocomposites with a High Photothermal Conversion Ability in the Near-Infrared Region for Enhanced Cancer Photothermal Therapy. Wu P; Deng D; Gao J; Cai C ACS Appl Mater Interfaces; 2016 Apr; 8(16):10243-52. PubMed ID: 27054373 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation. Rahimi-Moghaddam F; Azarpira N; Sattarahmady N Lasers Med Sci; 2018 Nov; 33(8):1769-1779. PubMed ID: 29790012 [TBL] [Abstract][Full Text] [Related]
3. Facile synthesis of black phosphorus-Au nanocomposites for enhanced photothermal cancer therapy and surface-enhanced Raman scattering analysis. Yang G; Liu Z; Li Y; Hou Y; Fei X; Su C; Wang S; Zhuang Z; Guo Z Biomater Sci; 2017 Sep; 5(10):2048-2055. PubMed ID: 28736778 [TBL] [Abstract][Full Text] [Related]
4. Hybridized doxorubicin-Au nanospheres exhibit enhanced near-infrared surface plasmon absorption for photothermal therapy applications. Zhou J; Wang Z; Li Q; Liu F; Du Y; Yuan H; Hu F; Wei Y; You J Nanoscale; 2015 Mar; 7(13):5869-83. PubMed ID: 25757809 [TBL] [Abstract][Full Text] [Related]
5. Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor therapy. Zhu H; Chen Y; Yan FJ; Chen J; Tao XF; Ling J; Yang B; He QJ; Mao ZW Acta Biomater; 2017 Mar; 50():534-545. PubMed ID: 28027959 [TBL] [Abstract][Full Text] [Related]
6. Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy. Tang J; Jiang X; Wang L; Zhang H; Hu Z; Liu Y; Wu X; Chen C Nanoscale; 2014 Apr; 6(7):3670-8. PubMed ID: 24566522 [TBL] [Abstract][Full Text] [Related]
7. Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers. Zeng L; Pan Y; Wang S; Wang X; Zhao X; Ren W; Lu G; Wu A ACS Appl Mater Interfaces; 2015 Aug; 7(30):16781-91. PubMed ID: 26204589 [TBL] [Abstract][Full Text] [Related]
8. Hollow Au-Cu Nanocomposite for Real-Time Tracing Photothermal/Antiangiogenic Therapy. Pang X; Tan X; Wang J; Liu L; You Q; Sun Q; Wang Y; Tan F; Li N Adv Healthc Mater; 2017 Jul; 6(13):. PubMed ID: 28464525 [TBL] [Abstract][Full Text] [Related]
9. TiO Wang Z; Run Z; Wang H; He X; Li J Int J Nanomedicine; 2024; 19():1041-1054. PubMed ID: 38317849 [TBL] [Abstract][Full Text] [Related]
10. Coating Carbon Nanosphere with Patchy Gold for Production of Highly Efficient Photothermal Agent. Wang X; Cao D; Tang X; Yang J; Jiang D; Liu M; He N; Wang Z ACS Appl Mater Interfaces; 2016 Aug; 8(30):19321-32. PubMed ID: 27351062 [TBL] [Abstract][Full Text] [Related]
11. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window. Gao F; He G; Yin H; Chen J; Liu Y; Lan C; Zhang S; Yang B Nanoscale; 2019 Jan; 11(5):2374-2384. PubMed ID: 30667014 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of Graphene and AuNP Core Polyaniline Shell Nanocomposites as Multifunctional Theranostic Platforms for SERS Real-time Monitoring and Chemo-photothermal Therapy. Chen H; Liu Z; Li S; Su C; Qiu X; Zhong H; Guo Z Theranostics; 2016; 6(8):1096-104. PubMed ID: 27279904 [TBL] [Abstract][Full Text] [Related]
13. Gold nanorod-seeded synthesis of Au@Ag/Au nanospheres with broad and intense near-infrared absorption for photothermal cancer therapy. Ye X; Shi H; He X; Wang K; Li D; Qiu P J Mater Chem B; 2014 Jun; 2(23):3667-3673. PubMed ID: 32263803 [TBL] [Abstract][Full Text] [Related]
14. Au/polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an in vitro study. Feng W; Zhou X; Nie W; Chen L; Qiu K; Zhang Y; He C ACS Appl Mater Interfaces; 2015 Feb; 7(7):4354-67. PubMed ID: 25664659 [TBL] [Abstract][Full Text] [Related]
15. Photothermal cancer therapy by gold-ferrite nanocomposite and near-infrared laser in animal model. Heidari M; Sattarahmady N; Azarpira N; Heli H; Mehdizadeh AR; Zare T Lasers Med Sci; 2016 Feb; 31(2):221-7. PubMed ID: 26694488 [TBL] [Abstract][Full Text] [Related]
16. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. Tian Q; Jiang F; Zou R; Liu Q; Chen Z; Zhu M; Yang S; Wang J; Wang J; Hu J ACS Nano; 2011 Dec; 5(12):9761-71. PubMed ID: 22059851 [TBL] [Abstract][Full Text] [Related]
17. Local field enhanced Au/CuS nanocomposites as efficient photothermal transducer agents for cancer treatment. Lakshmanan SB; Zou X; Hossu M; Ma L; Yang C; Chen W J Biomed Nanotechnol; 2012 Dec; 8(6):883-90. PubMed ID: 23029996 [TBL] [Abstract][Full Text] [Related]
18. Single wavelength light-mediated, synergistic bimodal cancer photoablation and amplified photothermal performance by graphene/gold nanostar/photosensitizer theranostics. Wu C; Li D; Wang L; Guan X; Tian Y; Yang H; Li S; Liu Y Acta Biomater; 2017 Apr; 53():631-642. PubMed ID: 28161572 [TBL] [Abstract][Full Text] [Related]
19. Confined growth of multiple gold nanorices in dual-mesoporous silica nanospheres for improved computed tomography imaging and photothermal therapy. Qin L; Niu D; Jiang Y; He J; Jia X; Zhao W; Li P; Li Y Int J Nanomedicine; 2019; 14():1519-1532. PubMed ID: 30880962 [TBL] [Abstract][Full Text] [Related]
20. A zwitterionic polypeptide nanocomposite with unique NIR-I/II photoacoustic imaging for NIR-I/II cancer photothermal therapy. Du C; Zhou L; Qian J; He M; Dong CM; Xia JD; Zhang ZG; Zhang R J Mater Chem B; 2021 Jul; 9(27):5484-5491. PubMed ID: 34161406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]