These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27054575)

  • 1. Food Surplus and Its Climate Burdens.
    Hiç C; Pradhan P; Rybski D; Kropp JP
    Environ Sci Technol; 2016 Apr; 50(8):4269-77. PubMed ID: 27054575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.
    Cederberg C; Hedenus F; Wirsenius S; Sonesson U
    Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain.
    Porter SD; Reay DS; Higgins P; Bomberg E
    Sci Total Environ; 2016 Nov; 571():721-9. PubMed ID: 27432722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?
    Smith P; Haberl H; Popp A; Erb KH; Lauk C; Harper R; Tubiello FN; de Siqueira Pinto A; Jafari M; Sohi S; Masera O; Böttcher H; Berndes G; Bustamante M; Ahammad H; Clark H; Dong H; Elsiddig EA; Mbow C; Ravindranath NH; Rice CW; Robledo Abad C; Romanovskaya A; Sperling F; Herrero M; House JI; Rose S
    Glob Chang Biol; 2013 Aug; 19(8):2285-302. PubMed ID: 23505220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoupling of greenhouse gas emissions from global agricultural production: 1970-2050.
    Bennetzen EH; Smith P; Porter JR
    Glob Chang Biol; 2016 Feb; 22(2):763-81. PubMed ID: 26451699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The causal nexus between carbon dioxide emissions and agricultural ecosystem-an econometric approach.
    Asumadu-Sarkodie S; Owusu PA
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1608-1618. PubMed ID: 27796968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation.
    Vetter SH; Sapkota TB; Hillier J; Stirling CM; Macdiarmid JI; Aleksandrowicz L; Green R; Joy EJ; Dangour AD; Smith P
    Agric Ecosyst Environ; 2017 Jan; 237():234-241. PubMed ID: 28148994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change and sustainable food production.
    Smith P; Gregory PJ
    Proc Nutr Soc; 2013 Feb; 72(1):21-8. PubMed ID: 23146244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing rice yields while minimizing yield-scaled global warming potential.
    Pittelkow CM; Adviento-Borbe MA; van Kessel C; Hill JE; Linquist BA
    Glob Chang Biol; 2014 May; 20(5):1382-93. PubMed ID: 24115565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global warming, population growth, and natural resources for food production.
    Pimentel D
    Soc Nat Resour; 1991; 4(4):347-63. PubMed ID: 12344889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate-friendly and nutrition-sensitive interventions can close the global dietary nutrient gap while reducing GHG emissions.
    Geyik Ö; Hadjikakou M; Bryan BA
    Nat Food; 2023 Jan; 4(1):61-73. PubMed ID: 37118573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agricultural soil greenhouse gas emissions: a review of national inventory methods.
    Lokupitiya E; Paustian K
    J Environ Qual; 2006; 35(4):1413-27. PubMed ID: 16825462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production-phase greenhouse gas emissions arising from deliberate withdrawal and destruction of fresh fruit and vegetables under the EU's Common Agricultural Policy.
    Porter SD; Reay DS; Bomberg E; Higgins P
    Sci Total Environ; 2018 Aug; 631-632():1544-1552. PubMed ID: 29727978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Livestock greenhouse gas emissions and mitigation potential in Europe.
    Bellarby J; Tirado R; Leip A; Weiss F; Lesschen JP; Smith P
    Glob Chang Biol; 2013 Jan; 19(1):3-18. PubMed ID: 23504717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agriculture in the climate change negotiations; ensuring that food production is not threatened.
    Muldowney J; Mounsey J; Kinsella L
    Animal; 2013 Jun; 7 Suppl 2():206-11. PubMed ID: 23739463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use.
    Kummu M; de Moel H; Porkka M; Siebert S; Varis O; Ward PJ
    Sci Total Environ; 2012 Nov; 438():477-89. PubMed ID: 23032564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developments in greenhouse gas emissions and net energy use in Danish agriculture - how to achieve substantial CO(2) reductions?
    Dalgaard T; Olesen JE; Petersen SO; Petersen BM; Jørgensen U; Kristensen T; Hutchings NJ; Gyldenkærne S; Hermansen JE
    Environ Pollut; 2011 Nov; 159(11):3193-203. PubMed ID: 21454001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agricultural opportunities to mitigate greenhouse gas emissions.
    Johnson JM; Franzluebbers AJ; Weyers SL; Reicosky DC
    Environ Pollut; 2007 Nov; 150(1):107-24. PubMed ID: 17706849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate smart agriculture and global food-crop production.
    De Pinto A; Cenacchi N; Kwon HY; Koo J; Dunston S
    PLoS One; 2020; 15(4):e0231764. PubMed ID: 32348336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.
    Yang N; Zhang H; Shao LM; Lü F; He PJ
    J Environ Manage; 2013 Nov; 129():510-21. PubMed ID: 24018116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.