BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27054664)

  • 1. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin.
    Salma A; Thoröe-Boveleth S; Schmidt TC; Tuerk J
    J Hazard Mater; 2016 Aug; 313():49-59. PubMed ID: 27054664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation products formation of ciprofloxacin in UVA/LED and UVA/LED/TiO
    Li S; Hu J
    Water Res; 2018 Apr; 132():320-330. PubMed ID: 29339304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ciprofloxacin degradation in photo-Fenton and photo-catalytic processes: Degradation mechanisms and iron chelation.
    Giri AS; Golder AK
    J Environ Sci (China); 2019 Jun; 80():82-92. PubMed ID: 30952355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water.
    Avisar D; Lester Y; Mamane H
    J Hazard Mater; 2010 Mar; 175(1-3):1068-74. PubMed ID: 19944527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient mineralization of antibiotic ciprofloxacin in acid aqueous medium by a novel photoelectro-Fenton process using a microwave discharge electrodeless lamp irradiation.
    Wang A; Zhang Y; Zhong H; Chen Y; Tian X; Li D; Li J
    J Hazard Mater; 2018 Jan; 342():364-374. PubMed ID: 28850914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity.
    Paul T; Dodd MC; Strathmann TJ
    Water Res; 2010 May; 44(10):3121-32. PubMed ID: 20363011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin.
    Wei X; Chen J; Xie Q; Zhang S; Ge L; Qiao X
    Environ Sci Technol; 2013 May; 47(9):4284-90. PubMed ID: 23548166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water.
    Porras J; Bedoya C; Silva-Agredo J; Santamaría A; Fernández JJ; Torres-Palma RA
    Water Res; 2016 May; 94():1-9. PubMed ID: 26921708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of intermediate by-products and mechanism of the photocatalytic degradation of ciprofloxacin in water using graphitized carbon nitride nanosheets.
    Jiménez-Salcedo M; Monge M; Tena MT
    Chemosphere; 2020 May; 247():125910. PubMed ID: 32069715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic transformation fate and toxicity of ciprofloxacin related to dissociation species: Experimental and theoretical evidences.
    Li S; Huang T; Du P; Liu W; Hu J
    Water Res; 2020 Oct; 185():116286. PubMed ID: 32818732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and degradation pathways of photolytic and photocatalytic oxidation of the anthelmintic drug praziquantel.
    Čizmić M; Ljubas D; Ćurković L; Škorić I; Babić S
    J Hazard Mater; 2017 Feb; 323(Pt A):500-512. PubMed ID: 27174626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-dependent degradation of ciprofloxacin in a membrane anodic Fenton system.
    Xiao X; Zeng X; Lemley AT
    J Agric Food Chem; 2010 Sep; 58(18):10169-75. PubMed ID: 20726585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo-degradation of the antimicrobial ciprofloxacin at high pH: identification and biodegradability assessment of the primary by-products.
    Vasconcelos TG; Henriques DM; König A; Martins AF; Kümmerer K
    Chemosphere; 2009 Jul; 76(4):487-93. PubMed ID: 19375777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of ciprofloxacin antibiotic by Homogeneous Fenton oxidation: Hybrid AHP-PROMETHEE method, optimization, biodegradability improvement and identification of oxidized by-products.
    Salari M; Rakhshandehroo GR; Nikoo MR
    Chemosphere; 2018 Sep; 206():157-167. PubMed ID: 29738905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significantly enhanced visible light photocatalytic efficiency of phosphorus doped TiO
    Feng X; Wang P; Hou J; Qian J; Ao Y; Wang C
    J Hazard Mater; 2018 Jun; 351():196-205. PubMed ID: 29550553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of active oxidative species on TiO2 photocatalysis of tetracycline and optimization of photocatalytic degradation conditions.
    Luo Z; Li L; Wei C; Li H; Chen D
    J Environ Biol; 2015 Jul; 36 Spec No():837-43. PubMed ID: 26387359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices.
    Jiang C; Ji Y; Shi Y; Chen J; Cai T
    Water Res; 2016 Dec; 106():507-517. PubMed ID: 27770727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photolytic and thin TiO₂ film assisted photocatalytic degradation of sulfamethazine in aqueous solution.
    Babić S; Zrnčić M; Ljubas D; Ćurković L; Škorić I
    Environ Sci Pollut Res Int; 2015 Aug; 22(15):11372-86. PubMed ID: 25810103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of sulfate, chloride, and nitrate anions on the degradation of fluoroquinolone antibiotics by photoelectro-Fenton.
    Villegas-Guzman P; Hofer F; Silva-Agredo J; Torres-Palma RA
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):28175-28189. PubMed ID: 29019037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic oxidation of ciprofloxacin under simulated sunlight.
    Gad-Allah TA; Ali ME; Badawy MI
    J Hazard Mater; 2011 Feb; 186(1):751-5. PubMed ID: 21193266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.