These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 27054678)

  • 1. Objective Assessment of Strength Training Exercises using a Wrist-Worn Accelerometer.
    Conger SA; Guo J; Fulkerson SM; Pedigo L; Chen H; Bassett DR
    Med Sci Sports Exerc; 2016 Sep; 48(9):1847-55. PubMed ID: 27054678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Accelerometry Methods for Estimating Physical Activity.
    Kerr J; Marinac CR; Ellis K; Godbole S; Hipp A; Glanz K; Mitchell J; Laden F; James P; Berrigan D
    Med Sci Sports Exerc; 2017 Mar; 49(3):617-624. PubMed ID: 27755355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sampling rate on acceleration and counts of hip- and wrist-worn ActiGraph accelerometers in children.
    Clevenger KA; Pfeiffer KA; Mackintosh KA; McNarry MA; Brønd J; Arvidsson D; Montoye AHK
    Physiol Meas; 2019 Sep; 40(9):095008. PubMed ID: 31518999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical activity classification using the GENEA wrist-worn accelerometer.
    Zhang S; Rowlands AV; Murray P; Hurst TL
    Med Sci Sports Exerc; 2012 Apr; 44(4):742-8. PubMed ID: 21988935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wrist-worn Accelerometry for Runners: Objective Quantification of Training Load.
    Stiles VH; Pearce M; Moore IS; Langford J; Rowlands AV
    Med Sci Sports Exerc; 2018 Nov; 50(11):2277-2284. PubMed ID: 30067593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer.
    Choi L; Ward SC; Schnelle JF; Buchowski MS
    Med Sci Sports Exerc; 2012 Oct; 44(10):2009-16. PubMed ID: 22525772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of resistance exercise energy expenditure using triaxial accelerometry.
    Stec MJ; Rawson ES
    J Strength Cond Res; 2012 May; 26(5):1413-22. PubMed ID: 22222328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of exercise order on upper body maximum and submaximal strength gains in trained men.
    Assumpção CO; Tibana RA; Viana LC; Willardson JM; Prestes J
    Clin Physiol Funct Imaging; 2013 Sep; 33(5):359-63. PubMed ID: 23701174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A statistical estimation framework for energy expenditure of physical activities from a wrist-worn accelerometer.
    Qiao Wang ; Lohit S; Toledo MJ; Buman MP; Turaga P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2631-2635. PubMed ID: 28268862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adapted Sojourn Models to Estimate Activity Intensity in Youth: A Suite of Tools.
    Hibbing PR; Ellingson LD; Dixon PM; Welk GJ
    Med Sci Sports Exerc; 2018 Apr; 50(4):846-854. PubMed ID: 29135657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a single bout of lower-body aerobic exercise on muscle activation and performance during subsequent lower- and upper-body resistance exercise workouts.
    Tan JG; Coburn JW; Brown LE; Judelson DA
    J Strength Cond Res; 2014 May; 28(5):1235-40. PubMed ID: 24531438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerometer wear-site detection: When one site does not suit all, all of the time.
    Rowlands AV; Olds TS; Bakrania K; Stanley RM; Parfitt G; Eston RG; Yates T; Fraysse F
    J Sci Med Sport; 2017 Apr; 20(4):368-372. PubMed ID: 28117147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of rest interval length manipulation of the first upper-body resistance exercise in sequence on acute performance of subsequent exercises in men and women.
    Ratamess NA; Chiarello CM; Sacco AJ; Hoffman JR; Faigenbaum AD; Ross RE; Kang J
    J Strength Cond Res; 2012 Nov; 26(11):2929-38. PubMed ID: 22964859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance-training exercises with different stability requirements: time course of task specificity.
    Saeterbakken AH; Andersen V; Behm DG; Krohn-Hansen EK; Smaamo M; Fimland MS
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2247-2256. PubMed ID: 27671996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age.
    Strath SJ; Kate RJ; Keenan KG; Welch WA; Swartz AM
    Physiol Meas; 2015 Nov; 36(11):2335-51. PubMed ID: 26449155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of a Chest-worn accelerometer for physical activity measurement.
    Zhang JH; Macfarlane DJ; Sobko T
    J Sci Med Sport; 2016 Dec; 19(12):1015-1019. PubMed ID: 27017012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volume-equated high- and low-repetition daily undulating programming strategies produce similar hypertrophy and strength adaptations.
    Klemp A; Dolan C; Quiles JM; Blanco R; Zoeller RF; Graves BS; Zourdos MC
    Appl Physiol Nutr Metab; 2016 Jul; 41(7):699-705. PubMed ID: 27218448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.