These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27054769)

  • 1. Significance of particle size and charge capacity in TiO2 nanoparticle-lipid interactions.
    Vakurov A; Drummond-Brydson R; Ugwumsinachi O; Nelson A
    J Colloid Interface Sci; 2016 Jul; 473():75-83. PubMed ID: 27054769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical modelling of QD-phospholipid interactions.
    Zhang S; Chen R; Malhotra G; Critchley K; Vakurov A; Nelson A
    J Colloid Interface Sci; 2014 Apr; 420():9-14. PubMed ID: 24559694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between phospholipids and titanium dioxide particles.
    Le QC; Ropers MH; Terrisse H; Humbert B
    Colloids Surf B Biointerfaces; 2014 Nov; 123():150-7. PubMed ID: 25242734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of aging on structure and stability of TiO2 nanoparticle-containing oil-in-water emulsions.
    Rossano M; Hucher N; Picard C; Colletta D; Le Foll F; Grisel M
    Int J Pharm; 2014 Jan; 461(1-2):89-96. PubMed ID: 24291079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study.
    Singh P; Nanda A
    Int J Cosmet Sci; 2014 Jun; 36(3):273-83. PubMed ID: 24575878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Mucin in Behavior of Food-Grade TiO
    Zhou H; Pandya JK; Tan Y; Liu J; Peng S; Muriel Mundo JL; He L; Xiao H; McClements DJ
    J Agric Food Chem; 2019 May; 67(20):5882-5890. PubMed ID: 31045357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle size determination of sunscreens formulated with various forms of titanium dioxide.
    Wokovich A; Tyner K; Doub W; Sadrieh N; Buhse LF
    Drug Dev Ind Pharm; 2009 Oct; 35(10):1180-9. PubMed ID: 19555241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different toxicity of anatase and rutile TiO
    Yu Q; Wang H; Peng Q; Li Y; Liu Z; Li M
    J Hazard Mater; 2017 Aug; 335():125-134. PubMed ID: 28437696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles.
    Jassby D; Farner Budarz J; Wiesner M
    Environ Sci Technol; 2012 Jul; 46(13):6934-41. PubMed ID: 22225505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions.
    Li Q; Li T; Liu C; DeLoid G; Pyrgiotakis G; Demokritou P; Zhang R; Xiao H; McClements DJ
    Nanotoxicology; 2017; 11(9-10):1087-1101. PubMed ID: 29160733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles.
    Peters RJ; van Bemmel G; Herrera-Rivera Z; Helsper HP; Marvin HJ; Weigel S; Tromp PC; Oomen AG; Rietveld AG; Bouwmeester H
    J Agric Food Chem; 2014 Jul; 62(27):6285-93. PubMed ID: 24933406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental study on the aggregation of TiO2 nanoparticles under environmentally relevant conditions.
    Romanello MB; Fidalgo de Cortalezzi MM
    Water Res; 2013 Aug; 47(12):3887-98. PubMed ID: 23579091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface charge and interfacial potential of titanium dioxide nanoparticles: experimental and theoretical investigations.
    Holmberg JP; Ahlberg E; Bergenholtz J; Hassellöv M; Abbas Z
    J Colloid Interface Sci; 2013 Oct; 407():168-76. PubMed ID: 23859811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The buccal mucosa as a route for TiO2 nanoparticle uptake.
    Teubl BJ; Leitinger G; Schneider M; Lehr CM; Fröhlich E; Zimmer A; Roblegg E
    Nanotoxicology; 2015 Mar; 9(2):253-61. PubMed ID: 24873758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning stable noble metal nanoparticles dispersions to moderate their interaction with model membranes.
    William N; Bamidoro F; Beales PA; Drummond-Brydson R; Hondow N; Key S; Kulak A; Walsh AC; Winter S; Nelson LA
    J Colloid Interface Sci; 2021 Jul; 594():101-112. PubMed ID: 33756358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical modeling of the silica nanoparticle-biomembrane interaction.
    Vakurov A; Brydson R; Nelson A
    Langmuir; 2012 Jan; 28(2):1246-55. PubMed ID: 22142270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of poly(N-isopropylacrylamide) (pNIPAM) based nanoparticles and their linear polymer precursor with phospholipid membrane models.
    Ormategui N; Zhang S; Loinaz I; Brydson R; Nelson A; Vakurov A
    Bioelectrochemistry; 2012 Oct; 87():211-9. PubMed ID: 22249139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: application to the modeling of their aggregation kinetics.
    Bouhaik IS; Leroy P; Ollivier P; Azaroual M; Mercury L
    J Colloid Interface Sci; 2013 Sep; 406():75-85. PubMed ID: 23806415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.