These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27054809)

  • 1. A Stochastic, Resonance-Free Multiple Time-Step Algorithm for Polarizable Models That Permits Very Large Time Steps.
    Margul DT; Tuckerman ME
    J Chem Theory Comput; 2016 May; 12(5):2170-80. PubMed ID: 27054809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics based enhanced sampling of collective variables with very large time steps.
    Chen PY; Tuckerman ME
    J Chem Phys; 2018 Jan; 148(2):024106. PubMed ID: 29331137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple time scale molecular dynamics for fluids with orientational degrees of freedom. II. Canonical and isokinetic ensembles.
    Omelyan IP; Kovalenko A
    J Chem Phys; 2011 Dec; 135(23):234107. PubMed ID: 22191864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Iteration-Free Polarization with Large Time Step Stochastic-Isokinetic Integration.
    Albaugh A; Tuckerman ME; Head-Gordon T
    J Chem Theory Comput; 2019 Apr; 15(4):2195-2205. PubMed ID: 30830768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple time step molecular dynamics in the optimized isokinetic ensemble steered with the molecular theory of solvation: accelerating with advanced extrapolation of effective solvation forces.
    Omelyan I; Kovalenko A
    J Chem Phys; 2013 Dec; 139(24):244106. PubMed ID: 24387356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive time stepping in biomolecular dynamics.
    Franklin J; Doniach S
    J Chem Phys; 2005 Sep; 123(12):124909. PubMed ID: 16392529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the dynamics of ionic liquids: comparisons between electronically polarizable and nonpolarizable models II.
    Yan T; Wang Y; Knox C
    J Phys Chem B; 2010 May; 114(20):6886-904. PubMed ID: 20443608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of a symplectic multiple-time-step molecular dynamics algorithm, based on the united-residue mesoscopic potential energy function.
    Rakowski F; Grochowski P; Lesyng B; Liwo A; Scheraga HA
    J Chem Phys; 2006 Nov; 125(20):204107. PubMed ID: 17144690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pushing the Limits of Multiple-Time-Step Strategies for Polarizable Point Dipole Molecular Dynamics.
    Lagardère L; Aviat F; Piquemal JP
    J Phys Chem Lett; 2019 May; 10(10):2593-2599. PubMed ID: 31050904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inherent speedup limitations in multiple time step/particle mesh Ewald algorithms.
    Barash D; Yang L; Qian X; Schlick T
    J Comput Chem; 2003 Jan; 24(1):77-88. PubMed ID: 12483677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein simulations using techniques suitable for very large systems: the cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator method for internal coordinate dynamics.
    Mathiowetz AM; Jain A; Karasawa N; Goddard WA
    Proteins; 1994 Nov; 20(3):227-47. PubMed ID: 7892172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple time step integrators in ab initio molecular dynamics.
    Luehr N; Markland TE; Martínez TJ
    J Chem Phys; 2014 Feb; 140(8):084116. PubMed ID: 24588157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Simulation Method for Polarizable Protein Force Fields:  Application to the Simulation of BPTI in Liquid Water.
    Harder E; Kim B; Friesner RA; Berne BJ
    J Chem Theory Comput; 2005 Jan; 1(1):169-80. PubMed ID: 26641127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overcoming the Barrier on Time Step Size in Multiscale Molecular Dynamics Simulation of Molecular Liquids.
    Omelyan IP; Kovalenko A
    J Chem Theory Comput; 2012 Jan; 8(1):6-16. PubMed ID: 26592867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refinement of thermostated molecular dynamics using backward error analysis.
    Silveira AJ; Abreu CRA
    J Chem Phys; 2019 Mar; 150(11):114110. PubMed ID: 30901992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long time molecular dynamics for enhanced conformational sampling in biomolecular systems.
    Minary P; Tuckerman ME; Martyna GJ
    Phys Rev Lett; 2004 Oct; 93(15):150201. PubMed ID: 15524853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operator splitting algorithm for isokinetic SLLOD molecular dynamics.
    Pan G; Ely JF; McCabe C; Isbister DJ
    J Chem Phys; 2005 Mar; 122(9):094114. PubMed ID: 15836119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient multiple time scale molecular dynamics: Using colored noise thermostats to stabilize resonances.
    Morrone JA; Markland TE; Ceriotti M; Berne BJ
    J Chem Phys; 2011 Jan; 134(1):014103. PubMed ID: 21218993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple time scale molecular dynamics for fluids with orientational degrees of freedom. I. Microcanonical ensemble.
    Omelyan IP; Kovalenko A
    J Chem Phys; 2011 Sep; 135(11):114110. PubMed ID: 21950853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.