These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2705551)

  • 1. Impedance of arterial system simulated by viscoelastic t tubes terminated in windkessels.
    Liu ZR; Shen F; Yin FC
    Am J Physiol; 1989 Apr; 256(4 Pt 2):H1087-99. PubMed ID: 2705551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance and wave reflection in arterial system: simulation with geometrically tapered T-tubes.
    Chang KC; Tseng YZ; Kuo TS; Chen HI
    Med Biol Eng Comput; 1995 Sep; 33(5):652-60. PubMed ID: 8523906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Input impedance and reflection coefficient in fractal-like models of asymmetrically branching compliant tubes.
    Brown DJ
    IEEE Trans Biomed Eng; 1996 Jul; 43(7):715-22. PubMed ID: 9216143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Impedance of cerebrovascular system simulated by a hemodynamic model of brain circulation].
    Ding G; Wei G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Mar; 14(1):4-10. PubMed ID: 9817656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The arterial Windkessel.
    Westerhof N; Lankhaar JW; Westerhof BE
    Med Biol Eng Comput; 2009 Feb; 47(2):131-41. PubMed ID: 18543011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The input impedance of an assembly of randomly branching elastic tubes.
    Taylor MG
    Biophys J; 1966 Jan; 6(1):29-51. PubMed ID: 5903152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analog transmission line model for simulation of systemic circulation.
    Chen CW; Shau YW; Wu CP
    IEEE Trans Biomed Eng; 1997 Jan; 44(1):90-4. PubMed ID: 9214787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex and frequency-dependent compliance of viscoelastic windkessel resolves contradictions in elastic windkessels.
    Burattini R; Natalucci S
    Med Eng Phys; 1998 Oct; 20(7):502-14. PubMed ID: 9832026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Input impedance of distributed arterial structures as used in investigations of underlying concepts in arterial haemodynamics.
    Avolio A
    Med Biol Eng Comput; 2009 Feb; 47(2):143-51. PubMed ID: 18949501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological interpretation of inductance and low-resistance terms in four-element windkessel models: assessment by generalized sensitivity function analysis.
    Burattini R; Bini S
    Med Eng Phys; 2011 Jul; 33(6):739-54. PubMed ID: 21377401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-domain formulation of asymmetric T-tube model of arterial system.
    Campbell KB; Burattini R; Bell DL; Kirkpatrick RD; Knowlen GG
    Am J Physiol; 1990 Jun; 258(6 Pt 2):H1761-74. PubMed ID: 2360669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic consequences of replacing the aorta by vascular grafts simulated in a mathematical model.
    Schulz S; Bauernschmitt R; Schwarzhaupt A; Vahl CF; Kiencke U
    Biomed Sci Instrum; 1997; 34():263-8. PubMed ID: 9603050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulse reflection sites and effective length of the arterial system.
    Campbell KB; Lee LC; Frasch HF; Noordergraaf A
    Am J Physiol; 1989 Jun; 256(6 Pt 2):H1684-9. PubMed ID: 2735437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of systemic arterial mechanical properties from infancy to adulthood interpreted by four-element windkessel models.
    Burattini R; Di Salvia PO
    J Appl Physiol (1985); 2007 Jul; 103(1):66-79. PubMed ID: 17303709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arterial hemodynamics in a rabbit model of atherosclerosis.
    Zuckerman BD; Weisman HF; Yin FC
    Am J Physiol; 1989 Sep; 257(3 Pt 2):H891-7. PubMed ID: 2782446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stroke volume effect of changing arterial input impedance over selected frequency ranges.
    Sunagawa K; Maughan WL; Sagawa K
    Am J Physiol; 1985 Apr; 248(4 Pt 2):H477-84. PubMed ID: 3985173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational hemodynamics in arteries with the one-dimensional augmented fluid-structure interaction system: viscoelastic parameters estimation and comparison with in-vivo data.
    Bertaglia G; Navas-Montilla A; Valiani A; Monge GarcĂ­a MI; Murillo J; Caleffi V
    J Biomech; 2020 Feb; 100():109595. PubMed ID: 31911051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-port analysis of systemic venous and arterial impedances.
    Rose WC; Shoukas AA
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1577-87. PubMed ID: 8238570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of the systemic arterial bed showing ventricular-systemic arterial coupling.
    McIlroy MB; Targett RC
    Am J Physiol; 1988 Mar; 254(3 Pt 2):H609-16. PubMed ID: 3348437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydraulic input impedance measurements in physical models of the arterial wall.
    Papageorgiou GL; Jones NB
    J Biomed Eng; 1989 Nov; 11(6):471-7. PubMed ID: 2811346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.