These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 27056733)

  • 1. Stress chaperone mortalin regulates human melanogenesis.
    Wadhwa R; Priyandoko D; Gao R; Widodo N; Nigam N; Li L; Ahn HM; Yun CO; Ando N; Mahe C; Kaul SC
    Cell Stress Chaperones; 2016 Jul; 21(4):631-44. PubMed ID: 27056733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of Diacylglycerol-Induced Melanogenesis in Human Melanoma and Primary Melanocytes: Role of Stress Chaperone Mortalin.
    Wadhwa R; Li L; Singh R; Wang J; Gao R; Nigam N; Forestier S; Ando N; Kaul SC
    Evid Based Complement Alternat Med; 2019; 2019():9848969. PubMed ID: 31097976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IDH2 deficiency accelerates skin pigmentation in mice via enhancing melanogenesis.
    Park JH; Ku HJ; Lee JH; Park JW
    Redox Biol; 2018 Jul; 17():16-24. PubMed ID: 29660504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liver X receptor activation inhibits melanogenesis through the acceleration of ERK-mediated MITF degradation.
    Lee CS; Park M; Han J; Lee JH; Bae IH; Choi H; Son ED; Park YH; Lim KM
    J Invest Dermatol; 2013 Apr; 133(4):1063-71. PubMed ID: 23223141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60.
    Wadhwa R; Takano S; Kaur K; Aida S; Yaguchi T; Kaul Z; Hirano T; Taira K; Kaul SC
    Biochem J; 2005 Oct; 391(Pt 2):185-90. PubMed ID: 15957980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-State Levels of Phosphorylated Mitogen-Activated Protein Kinase Kinase 1/2 Determined by Mortalin/HSPA9 and Protein Phosphatase 1 Alpha in
    Wu PK; Hong SK; Park JI
    Mol Cell Biol; 2017 Sep; 37(18):. PubMed ID: 28674184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells.
    Ganesan AK; Ho H; Bodemann B; Petersen S; Aruri J; Koshy S; Richardson Z; Le LQ; Krasieva T; Roth MG; Farmer P; White MA
    PLoS Genet; 2008 Dec; 4(12):e1000298. PubMed ID: 19057677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Keap1 knockdown in melanocytes induces cell proliferation and survival via HO-1-associated β-catenin signaling.
    Kim JY; Lee H; Lee EJ; Kim M; Kim TG; Kim HP; Oh SH
    J Dermatol Sci; 2017 Oct; 88(1):85-95. PubMed ID: 28583303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRTC3, a sensor and key regulator for melanogenesis, as a tunable therapeutic target for pigmentary disorders.
    Yoo H; Lee HR; Kim KH; Kim MA; Bang S; Kang YH; Kim WH; Song Y; Chang SE
    Theranostics; 2021; 11(20):9918-9936. PubMed ID: 34815795
    [No Abstract]   [Full Text] [Related]  

  • 10. Ultraviolet stimulated melanogenesis by human melanocytes is augmented by di-acyl glycerol but not TPA.
    Friedmann PS; Wren FE; Matthews JN
    J Cell Physiol; 1990 Feb; 142(2):334-41. PubMed ID: 2303529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraviolet radiation-induced melanogenesis in human melanocytes. Effects of modulating protein kinase C.
    Carsberg CJ; Warenius HM; Friedmann PS
    J Cell Sci; 1994 Sep; 107 ( Pt 9)():2591-7. PubMed ID: 7531203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IL-4 inhibits the melanogenesis of normal human melanocytes through the JAK2-STAT6 signaling pathway.
    Choi H; Choi H; Han J; Jin SH; Park JY; Shin DW; Lee TR; Kim K; Lee AY; Noh M
    J Invest Dermatol; 2013 Feb; 133(2):528-36. PubMed ID: 22992805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mortalin deficiency suppresses fibrosis and induces apoptosis in keloid spheroids.
    Lee WJ; Ahn HM; Na Y; Wadhwa R; Hong J; Yun CO
    Sci Rep; 2017 Oct; 7(1):12957. PubMed ID: 29021584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. microRNAs in the Regulation of Melanogenesis.
    Hushcha Y; Blo I; Oton-Gonzalez L; Mauro GD; Martini F; Tognon M; Mattei M
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34198907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SH3BP4, a novel pigmentation gene, is inversely regulated by miR-125b and MITF.
    Kim KH; Lee TR; Cho EG
    Exp Mol Med; 2017 Aug; 49(8):e367. PubMed ID: 28819321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential role of the molecular chaperone gp96 in regulating melanogenesis.
    Zhang Y; Helke KL; Coelho SG; Valencia JC; Hearing VJ; Sun S; Liu B; Li Z
    Pigment Cell Melanoma Res; 2014 Jan; 27(1):82-9. PubMed ID: 24024552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MITF-M regulates melanogenesis in mouse melanocytes.
    Chen T; Zhao B; Liu Y; Wang R; Yang Y; Yang L; Dong C
    J Dermatol Sci; 2018 Jun; 90(3):253-262. PubMed ID: 29496358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mortalin (GRP75/HSPA9) Promotes Survival and Proliferation of Thyroid Carcinoma Cells.
    Starenki D; Sosonkina N; Hong SK; Lloyd RV; Park JI
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31027376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1.
    Burbulla LF; Fitzgerald JC; Stegen K; Westermeier J; Thost AK; Kato H; Mokranjac D; Sauerwald J; Martins LM; Woitalla D; Rapaport D; Riess O; Proikas-Cezanne T; Rasse TM; Krüger R
    Cell Death Dis; 2014 Apr; 5(4):e1180. PubMed ID: 24743735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of hyperpigmentation on superoxide flux and melanoma cell metabolism at mitochondrial complex II.
    Boulton SJ; Birch-Machin MA
    FASEB J; 2015 Jan; 29(1):346-53. PubMed ID: 25351989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.