These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27057422)

  • 1. Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object.
    Lecocq F; Clark JB; Simmonds RW; Aumentado J; Teufel JD
    Phys Rev X; 2015; 5(4):041037. PubMed ID: 27057422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sideband cooling beyond the quantum backaction limit with squeezed light.
    Clark JB; Lecocq F; Simmonds RW; Aumentado J; Teufel JD
    Nature; 2017 Jan; 541(7636):191-195. PubMed ID: 28079081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum mechanics. Mechanically detecting and avoiding the quantum fluctuations of a microwave field.
    Suh J; Weinstein AJ; Lei CU; Wollman EE; Steinke SK; Meystre P; Clerk AA; Schwab KC
    Science; 2014 Jun; 344(6189):1262-5. PubMed ID: 24831528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.
    Verhagen E; Deléglise S; Weis S; Schliesser A; Kippenberg TJ
    Nature; 2012 Feb; 482(7383):63-7. PubMed ID: 22297970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical backaction-evading measurement of a mechanical oscillator.
    Shomroni I; Qiu L; Malz D; Nunnenkamp A; Kippenberg TJ
    Nat Commun; 2019 May; 10(1):2086. PubMed ID: 31064984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Nondemolition Measurement of a Quantum Squeezed State Beyond the 3 dB Limit.
    Lei CU; Weinstein AJ; Suh J; Wollman EE; Kronwald A; Marquardt F; Clerk AA; Schwab KC
    Phys Rev Lett; 2016 Sep; 117(10):100801. PubMed ID: 27636463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of Motion beyond the Quantum Limit by Transient Amplification.
    Delaney RD; Reed AP; Andrews RW; Lehnert KW
    Phys Rev Lett; 2019 Nov; 123(18):183603. PubMed ID: 31763905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Backaction Evading Measurement of Collective Mechanical Modes.
    Ockeloen-Korppi CF; Damskägg E; Pirkkalainen JM; Clerk AA; Woolley MJ; Sillanpää MA
    Phys Rev Lett; 2016 Sep; 117(14):140401. PubMed ID: 27740800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement-based control of a mechanical oscillator at its thermal decoherence rate.
    Wilson DJ; Sudhir V; Piro N; Schilling R; Ghadimi A; Kippenberg TJ
    Nature; 2015 Aug; 524(7565):325-9. PubMed ID: 26258303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical squeezing via parametric amplification and weak measurement.
    Szorkovszky A; Doherty AC; Harris GI; Bowen WP
    Phys Rev Lett; 2011 Nov; 107(21):213603. PubMed ID: 22181880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State Preparation and Tomography of a Nanomechanical Resonator with Fast Light Pulses.
    Muhonen JT; La Gala GR; Leijssen R; Verhagen E
    Phys Rev Lett; 2019 Sep; 123(11):113601. PubMed ID: 31573245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum optics. Quantum harmonic oscillator state synthesis by reservoir engineering.
    Kienzler D; Lo HY; Keitch B; de Clercq L; Leupold F; Lindenfelser F; Marinelli M; Negnevitsky V; Home JP
    Science; 2015 Jan; 347(6217):53-6. PubMed ID: 25525161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
    Wollman EE; Lei CU; Weinstein AJ; Suh J; Kronwald A; Marquardt F; Clerk AA; Schwab KC
    Science; 2015 Aug; 349(6251):952-5. PubMed ID: 26315431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light.
    Schäfermeier C; Kerdoncuff H; Hoff UB; Fu H; Huck A; Bilek J; Harris GI; Bowen WP; Gehring T; Andersen UL
    Nat Commun; 2016 Nov; 7():13628. PubMed ID: 27897181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Squeezing of Quantum Noise of Motion in a Micromechanical Resonator.
    Pirkkalainen JM; Damskägg E; Brandt M; Massel F; Sillanpää MA
    Phys Rev Lett; 2015 Dec; 115(24):243601. PubMed ID: 26705631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics.
    Hoff UB; Kollath-Bönig J; Neergaard-Nielsen JS; Andersen UL
    Phys Rev Lett; 2016 Sep; 117(14):143601. PubMed ID: 27740796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-temperature quantum optomechanics using an ultralow noise cavity.
    Huang G; Beccari A; Engelsen NJ; Kippenberg TJ
    Nature; 2024 Feb; 626(7999):512-516. PubMed ID: 38356070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Squeezing via Fast Continuous Measurement.
    Meng C; Brawley GA; Bennett JS; Vanner MR; Bowen WP
    Phys Rev Lett; 2020 Jul; 125(4):043604. PubMed ID: 32794807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Squeezed light from an oscillator measured at the rate of oscillation.
    Bærentsen C; Fedorov SA; Østfeldt C; Balabas MV; Zeuthen E; Polzik ES
    Nat Commun; 2024 May; 15(1):4146. PubMed ID: 38755123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanics-free subsystem with mechanical oscillators.
    Mercier de Lépinay L; Ockeloen-Korppi CF; Woolley MJ; Sillanpää MA
    Science; 2021 May; 372(6542):625-629. PubMed ID: 33958476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.