These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2705784)

  • 1. Steady-state kinetic studies of the metal ion-dependent decarboxylation of oxalacetate catalyzed by pyruvate kinase.
    Kiick DM; Cleland WW
    Arch Biochem Biophys; 1989 May; 270(2):647-54. PubMed ID: 2705784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH studies on the chemical mechanism of rabbit muscle pyruvate kinase. 1. Alternate substrates oxalacetate, glycolate, hydroxylamine, and fluoride.
    Dougherty TM; Cleland WW
    Biochemistry; 1985 Oct; 24(21):5870-5. PubMed ID: 4084498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction reactions catalyzed by malic enzyme.
    Park SH; Harris BG; Cook PF
    Biochemistry; 1986 Jul; 25(13):3752-9. PubMed ID: 3741834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoenolpyruvate carboxykinase (guanosine 5'-triphosphate) from rat liver cytosol. Divalent cation involvement in the decarboxylation reactions.
    Colombo G; Lardy HA
    Biochemistry; 1981 May; 20(10):2758-67. PubMed ID: 6788071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual divalent cation requirement for activation of pyruvate kinase; essential roles of both enzyme- and nucleotide-bound metal ions.
    Gupta RK; Oesterling RM
    Biochemistry; 1976 Jun; 15(13):2881-7. PubMed ID: 7293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decarboxylation of oxalacetate to pyruvate by purified avian liver phosphoenolpyruvate carboxykinase.
    Noce PS; Utter MF
    J Biol Chem; 1975 Dec; 250(23):9099-105. PubMed ID: 392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of cations in avian liver phosphoenolpyruvate carboxykinase catalysis. Activation and regulation.
    Lee MH; Hebda CA; Nowak T
    J Biol Chem; 1981 Dec; 256(24):12793-801. PubMed ID: 6796577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal ion activator effects on intrinsic isotope effects for hydride transfer from decarboxylation in the reaction catalyzed by the NAD-malic enzyme from Ascaris suum.
    Karsten WE; Gavva SR; Park SH; Cook PF
    Biochemistry; 1995 Mar; 34(10):3253-60. PubMed ID: 7880820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH studies on the chemical mechanism of rabbit muscle pyruvate kinase. 2. Physiological substrates and phosphoenol-alpha-ketobutyrate.
    Dougherty TM; Cleland WW
    Biochemistry; 1985 Oct; 24(21):5875-80. PubMed ID: 3878724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of monovalent and divalent cations on the activity of Streptococcus lactis C10 pyruvate kinase.
    Crow VL; Pritchard GG
    Biochim Biophys Acta; 1977 Mar; 481(1):105-14. PubMed ID: 14688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH variation of the kinetic parameters and the catalytic mechanism of malic enzyme.
    Schimerlik MI; Cleland WW
    Biochemistry; 1977 Feb; 16(4):576-83. PubMed ID: 13821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decarboxylation of oxalacetate by pyruvate carboxylase.
    Attwood PV; Cleland WW
    Biochemistry; 1986 Dec; 25(25):8191-6. PubMed ID: 3814578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation and inhibition of rabbit muscle pyruvate kinase by transition-metal ions.
    Ainsworth S; Macfarlane N
    Biochem J; 1975 Jan; 145(1):63-71. PubMed ID: 1238084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary 18O and primary 13C isotope effects as a probe of transition-state structure for enzymatic decarboxylation of oxalacetate.
    Waldrop GL; Braxton BF; Urbauer JL; Cleland WW; Kiick DM
    Biochemistry; 1994 May; 33(17):5262-7. PubMed ID: 8172901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of glycolysis in Neurospora crassa. Kinetic properties of pyruvate kinase.
    Tsao MU; Madley TI
    Microbios; 1975; 12(49):125-42. PubMed ID: 241893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation.
    Brown DA; Cook RA
    Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxalacetate decarboxylase activity in muscle is due to pyruvate kinase.
    Creighton DJ; Rose IA
    J Biol Chem; 1976 Jan; 251(1):69-72. PubMed ID: 1244356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-13 and deuterium isotope effects on oxalacetate decarboxylation by pyruvate carboxylase.
    Attwood PV; Tipton PA; Cleland WW
    Biochemistry; 1986 Dec; 25(25):8197-205. PubMed ID: 3028472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-ion-mediated allosteric triggering of yeast pyruvate kinase. 1. A multidimensional kinetic linked-function analysis.
    Mesecar AD; Nowak T
    Biochemistry; 1997 Jun; 36(22):6792-802. PubMed ID: 9184162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.