These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27058106)

  • 1. Coalescence In Draining Foams Made of Very Small Bubbles.
    Briceño-Ahumada Z; Drenckhan W; Langevin D
    Phys Rev Lett; 2016 Mar; 116(12):128302. PubMed ID: 27058106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Ostwald ripening by using surfactants with high surface modulus.
    Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the influence of surfactant on the coarsening of aqueous foams.
    Briceño-Ahumada Z; Langevin D
    Adv Colloid Interface Sci; 2017 Jun; 244():124-131. PubMed ID: 26687804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions.
    Golemanov K; Tcholakova S; Denkov ND; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051405. PubMed ID: 19113128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the stability of foams made with surfactant bilayer phases.
    Briceño-Ahumada Z; Maldonado A; Impéror-Clerc M; Langevin D
    Soft Matter; 2016 Feb; 12(5):1459-67. PubMed ID: 26647140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drainage and Coalescence in Standing Foams.
    Bhakta A; Ruckenstein E
    J Colloid Interface Sci; 1997 Jul; 191(1):184-201. PubMed ID: 9241219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foams stabilised by mixtures of nanoparticles and oppositely charged surfactants: relationship between bubble shrinkage and foam coarsening.
    Maestro A; Rio E; Drenckhan W; Langevin D; Salonen A
    Soft Matter; 2014 Sep; 10(36):6975-83. PubMed ID: 24832218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersion behavior and aqueous foams in mixtures of a vesicle-forming surfactant and edible nanoparticles.
    Binks BP; Campbell S; Mashinchi S; Piatko MP
    Langmuir; 2015 Mar; 31(10):2967-78. PubMed ID: 25734773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical bubble size distributions in coarsening wet liquid foams.
    Galvani N; Pasquet M; Mukherjee A; Requier A; Cohen-Addad S; Pitois O; Höhler R; Rio E; Salonen A; Durian DJ; Langevin D
    Proc Natl Acad Sci U S A; 2023 Sep; 120(38):e2306551120. PubMed ID: 37708201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of individual particle armored bubble interaction, stability, and coalescence dynamics.
    Tan SY; Ata S; Wanless EJ
    J Phys Chem B; 2013 Jul; 117(28):8579-88. PubMed ID: 23796213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sclerosant foam structure and stability is strongly influenced by liquid air fraction.
    Cameron E; Chen T; Connor DE; Behnia M; Parsi K
    Eur J Vasc Endovasc Surg; 2013 Oct; 46(4):488-94. PubMed ID: 23993276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of liquid foams through the synergistic action of particles and an immiscible liquid.
    Zhang Y; Wu J; Wang H; Meredith JC; Behrens SH
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13385-9. PubMed ID: 25284445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of bubble coalescence induced by surfactant covered antifoam particles.
    Joshi KS; Baumann A; Jeelani SA; Blickenstorfer C; Naegeli I; Windhab EJ
    J Colloid Interface Sci; 2009 Nov; 339(2):446-53. PubMed ID: 19726048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology of draining steady-state foams.
    Soller R; Koehler SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021504. PubMed ID: 19792130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusually stable liquid foams.
    Rio E; Drenckhan W; Salonen A; Langevin D
    Adv Colloid Interface Sci; 2014 Mar; 205():74-86. PubMed ID: 24342735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foams Stabilized by Surfactant Precipitates: Criteria for Ultrastability.
    Zhang L; Tian L; Du H; Rouzière S; Wang N; Salonen A
    Langmuir; 2017 Jul; 33(29):7305-7311. PubMed ID: 28669193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Individual Liquid Films to Macroscopic Foam Dynamics: A Comparison between Polymers and a Nonionic Surfactant.
    Mikhailovskaya A; Chatzigiannakis E; Renggli D; Vermant J; Monteux C
    Langmuir; 2022 Sep; 38(35):10768-10780. PubMed ID: 35998760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced drainage and coarsening in aqueous foams.
    Vera MU; Durian DJ
    Phys Rev Lett; 2002 Feb; 88(8):088304. PubMed ID: 11863979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous and Oil Foams Stabilized by Surfactant Crystals: New Concepts and Perspectives.
    Fameau AL; Binks BP
    Langmuir; 2021 Apr; 37(15):4411-4418. PubMed ID: 33825479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How topological rearrangements and liquid fraction control liquid foam stability.
    Biance AL; Delbos A; Pitois O
    Phys Rev Lett; 2011 Feb; 106(6):068301. PubMed ID: 21405499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.