These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27058106)

  • 21. Comparison between generations of foams and single vertical films--single and mixed surfactant systems.
    Saulnier L; Boos J; Stubenrauch C; Rio E
    Soft Matter; 2014 Aug; 10(29):5280-8. PubMed ID: 24838984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surfactant mixtures for control of bubble surface mobility in foam studies.
    Golemanov K; Denkov ND; Tcholakova S; Vethamuthu M; Lips A
    Langmuir; 2008 Sep; 24(18):9956-61. PubMed ID: 18698860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Additional Article Notification: Comparison between generations of foams and single vertical films--single and mixed surfactant systems.
    Saulnier L; Boos J; Stubenrauch C; Rio E
    Soft Matter; 2014 Sep; 10(36):7117-25. PubMed ID: 25147875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermodynamic and mechanical timescales involved in foam film rupture and liquid foam coalescence.
    Rio E; Biance AL
    Chemphyschem; 2014 Dec; 15(17):3692-707. PubMed ID: 25257045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid in vitro tests of surfactant film formation: advantages of the Exerowa black film method.
    Cordova M; Mautone AJ; Scarpelli EM
    Pediatr Pulmonol; 1996 Jun; 21(6):373-82. PubMed ID: 8927464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphology and stability of CO2-in-water foams with nonionic hydrocarbon surfactants.
    Adkins SS; Chen X; Chan I; Torino E; Nguyen QP; Sanders AW; Johnston KP
    Langmuir; 2010 Apr; 26(8):5335-48. PubMed ID: 20345107
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of Surfactant Structure on the Drainage of Nonionic Surfactant Foam Films.
    Tamura T; Takeuchi Y; Kaneko Y
    J Colloid Interface Sci; 1998 Oct; 206(1):112-121. PubMed ID: 9761634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rheology of steady-state draining foams.
    Soller R; Koehler SA
    Phys Rev Lett; 2008 May; 100(20):208301. PubMed ID: 18518582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of nanoparticle aggregation on surfactant foam stability.
    AlYousef ZA; Almobarky MA; Schechter DS
    J Colloid Interface Sci; 2018 Feb; 511():365-373. PubMed ID: 29031155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties of aqueous foams stabilized by dodecyltrimethylammonium bromide.
    Carey E; Stubenrauch C
    J Colloid Interface Sci; 2009 May; 333(2):619-27. PubMed ID: 19268300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilization of foams by the combined effects of an insoluble gas species and gelation.
    Bey H; Wintzenrieth F; Ronsin O; Höhler R; Cohen-Addad S
    Soft Matter; 2017 Oct; 13(38):6816-6830. PubMed ID: 28825087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid Plateau border size variations expected in three simple experiments on 2D liquid foams.
    Gay C; Rognon P; Reinelt D; Molino F
    Eur Phys J E Soft Matter; 2011 Jan; 34(1):2. PubMed ID: 21253804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultradry Carbon Dioxide-in-Water Foams with Viscoelastic Aqueous Phases.
    Xue Z; Worthen AJ; Da C; Qajar A; Ketchum IR; Alzobaidi S; Huh C; Prodanović M; Johnston KP
    Langmuir; 2016 Jan; 32(1):28-37. PubMed ID: 26666311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrodynamic instability and coalescence in trains of emulsion drops or gas bubbles moving through a narrow capillary.
    Danov KD; Valkovska DS; Kralchevsky PA
    J Colloid Interface Sci; 2003 Nov; 267(1):243-58. PubMed ID: 14554190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Foam: a multiphase system with many facets.
    Hilgenfeldt S; Arif S; Tsai JC
    Philos Trans A Math Phys Eng Sci; 2008 Jun; 366(1873):2145-59. PubMed ID: 18348972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stray-field NMR diffusion q-space diffraction imaging of monodisperse coarsening foams.
    Smith K; Burbidge A; Apperley D; Hodgkinson P; Markwell FA; Topgaard D; Hughes E
    J Colloid Interface Sci; 2016 Aug; 476():20-28. PubMed ID: 27179175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thinning of a vertical free-draining aqueous film incorporating colloidal particles.
    Tan SN; Yang Y; Horn RG
    Langmuir; 2010 Jan; 26(1):63-73. PubMed ID: 19886631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants.
    Alzobaidi S; Da C; Tran V; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2017 Feb; 488():79-91. PubMed ID: 27821342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factors controlling the formation and stability of foams used as precursors of porous materials.
    Lesov I; Tcholakova S; Denkov N
    J Colloid Interface Sci; 2014 Jul; 426():9-21. PubMed ID: 24863759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Foam invasion through a single pore.
    Delbos A; Pitois O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011404. PubMed ID: 21867168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.