BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 27058402)

  • 1. Production of biomass and lipids by the oleaginous microalgae Monoraphidium sp. QLY-1 through heterotrophic cultivation and photo-chemical modulator induction.
    Zhao Y; Li D; Ding K; Che R; Xu JW; Zhao P; Li T; Ma H; Yu X
    Bioresour Technol; 2016 Jul; 211():669-76. PubMed ID: 27058402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strategy for promoting lipid production in green microalgae Monoraphidium sp. QLY-1 by combined melatonin and photoinduction.
    Li D; Zhao Y; Ding W; Zhao P; Xu JW; Li T; Ma H; Yu X
    Bioresour Technol; 2017 Jul; 235():104-112. PubMed ID: 28365337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10.
    Zhao P; Yu X; Li J; Tang X; Huang Z
    J Biosci Bioeng; 2014 Jul; 118(1):72-7. PubMed ID: 24491914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions.
    Gim GH; Ryu J; Kim MJ; Kim PI; Kim SW
    J Ind Microbiol Biotechnol; 2016 May; 43(5):605-16. PubMed ID: 26856592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition.
    Lin TS; Wu JY
    Bioresour Technol; 2015 May; 184():100-107. PubMed ID: 25443671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid neutral lipid accumulation of the alkali-resistant oleaginous Monoraphidium dybowskii LB50 by NaCl induction.
    Yang H; He Q; Rong J; Xia L; Hu C
    Bioresour Technol; 2014 Nov; 172():131-137. PubMed ID: 25255189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock.
    Yu X; Zhao P; He C; Li J; Tang X; Zhou J; Huang Z
    Bioresour Technol; 2012 Oct; 121():256-62. PubMed ID: 22858494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production.
    Fan J; Huang J; Li Y; Han F; Wang J; Li X; Wang W; Li S
    Bioresour Technol; 2012 May; 112():206-11. PubMed ID: 22406065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NaCl as an effective inducer for lipid accumulation in freshwater microalgae Desmodesmus abundans.
    Xia L; Rong J; Yang H; He Q; Zhang D; Hu C
    Bioresour Technol; 2014 Jun; 161():402-9. PubMed ID: 24727701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions.
    Ho SH; Chang JS; Lai YY; Chen CN
    Bioresour Technol; 2014 Mar; 156():108-16. PubMed ID: 24491294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp.
    Kim G; Bae J; Lee K
    Bioresour Technol; 2016 Apr; 205():274-9. PubMed ID: 26827170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15.
    Xia L; Ge H; Zhou X; Zhang D; Hu C
    Bioresour Technol; 2013 Sep; 144():261-7. PubMed ID: 23876654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater.
    Luo L; He H; Yang C; Wen S; Zeng G; Wu M; Zhou Z; Lou W
    Bioresour Technol; 2016 Sep; 216():135-41. PubMed ID: 27236400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of lipid accumulation in Monoraphidium sp. QLY-1 by induction of strigolactone.
    Song X; Zhao Y; Li T; Han B; Zhao P; Xu JW; Yu X
    Bioresour Technol; 2019 Sep; 288():121607. PubMed ID: 31176945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and metabolic characteristics of oleaginous microalgal isolates from Nilgiri biosphere Reserve of India.
    Thangavel K; Radha Krishnan P; Nagaiah S; Kuppusamy S; Chinnasamy S; Rajadorai JS; Nellaiappan Olaganathan G; Dananjeyan B
    BMC Microbiol; 2018 Jan; 18(1):1. PubMed ID: 29433435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and heterotrophic cultivation of mixotrophic microalgae strains for domestic wastewater treatment and lipid production under dark condition.
    Zhang TY; Wu YH; Zhu SF; Li FM; Hu HY
    Bioresour Technol; 2013 Dec; 149():586-9. PubMed ID: 24140357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent.
    Tale M; Ghosh S; Kapadnis B; Kale S
    Bioresour Technol; 2014 Oct; 169():328-335. PubMed ID: 25063975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production.
    Zhou W; Li Y; Min M; Hu B; Chen P; Ruan R
    Bioresour Technol; 2011 Jul; 102(13):6909-19. PubMed ID: 21546246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load.
    Ummalyma SB; Sukumaran RK
    Bioresour Technol; 2014 Aug; 165():295-301. PubMed ID: 24703181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Chlorococcum pamirum as a potential biodiesel feedstock.
    Feng P; Deng Z; Hu Z; Wang Z; Fan L
    Bioresour Technol; 2014 Jun; 162():115-22. PubMed ID: 24747389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.