These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27058594)

  • 41. Rates of decline in regions of the visual field defined by frequency-domain optical coherence tomography in patients with RPGR-mediated X-linked retinitis pigmentosa.
    Birch DG; Locke KG; Felius J; Klein M; Wheaton DK; Hoffman DR; Hood DC
    Ophthalmology; 2015 Apr; 122(4):833-9. PubMed ID: 25556114
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Applicability of semi-automated kinetic perimetry (SKP) in the assessment of the visual field loss due to retinitis pigmentosa].
    Nowomiejska K; Paetzold J; Krapp E; Rejdak R; Zarnowski T; Zagórski Z; Schiefer U
    Klin Oczna; 2004; 106(3 Suppl):500-2. PubMed ID: 15636249
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new method to monitor visual field defects caused by photoreceptor degeneration by quantitative optical coherence tomography.
    Fischer MD; Fleischhauer JC; Gillies MC; Sutter FK; Helbig H; Barthelmes D
    Invest Ophthalmol Vis Sci; 2008 Aug; 49(8):3617-21. PubMed ID: 18441301
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Patterns of visual field progression in patients with retinitis pigmentosa.
    Grover S; Fishman GA; Brown J
    Ophthalmology; 1998 Jun; 105(6):1069-75. PubMed ID: 9627658
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Results at 2 Years after Gene Therapy for RPE65-Deficient Leber Congenital Amaurosis and Severe Early-Childhood-Onset Retinal Dystrophy.
    Weleber RG; Pennesi ME; Wilson DJ; Kaushal S; Erker LR; Jensen L; McBride MT; Flotte TR; Humphries M; Calcedo R; Hauswirth WW; Chulay JD; Stout JT
    Ophthalmology; 2016 Jul; 123(7):1606-20. PubMed ID: 27102010
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of pattern visual-evoked potentials to perimetry in the detection of visual loss in children with optic pathway gliomas.
    Kelly JP; Weiss AH
    J AAPOS; 2006 Aug; 10(4):298-306. PubMed ID: 16935227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of subtenon-injected autologous platelet-rich plasma on visual functions in eyes with retinitis pigmentosa: preliminary clinical results.
    Arslan U; Özmert E; Demirel S; Örnek F; Şermet F
    Graefes Arch Clin Exp Ophthalmol; 2018 May; 256(5):893-908. PubMed ID: 29546474
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crowding of the peripheral nasal isopters in glaucoma.
    de Oliveira Rassi M; Shields MB
    Am J Ophthalmol; 1982 Jul; 94(1):4-10. PubMed ID: 7091280
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Disease course of patients with pericentral retinitis pigmentosa.
    Sandberg MA; Gaudio AR; Berson EL
    Am J Ophthalmol; 2005 Jul; 140(1):100-6. PubMed ID: 15953579
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Abnormal fundus autofluorescence in relation to retinal function in patients with retinitis pigmentosa.
    Popović P; Jarc-Vidmar M; Hawlina M
    Graefes Arch Clin Exp Ophthalmol; 2005 Oct; 243(10):1018-27. PubMed ID: 15906064
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional constriction of the ocular motor field: description and preliminary evaluation of a new technique to help distinguish organic from nonorganic visual field loss.
    Ali N
    J Neuroophthalmol; 2011 Jun; 31(2):131-4. PubMed ID: 21368668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of mydriasis and miosis on kinetic perimetry findings in normal participants.
    Hirasawa K; Shoji N; Kobashi C; Yamanashi A
    Graefes Arch Clin Exp Ophthalmol; 2015 Aug; 253(8):1341-6. PubMed ID: 25981119
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Full-field electroretinography and marked variability in clinical phenotype of Alström syndrome.
    Malm E; Ponjavic V; Nishina PM; Naggert JK; Hinman EG; Andréasson S; Marshall JD; Möller C
    Arch Ophthalmol; 2008 Jan; 126(1):51-7. PubMed ID: 18195218
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recording and Analysis of Goldmann Kinetic Visual Fields.
    Talib M; Dagnelie G; Boon CJF
    Methods Mol Biol; 2018; 1715():327-338. PubMed ID: 29188525
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Full-field ERG, multifocal ERG and multifocal VEP in patients with retinitis pigmentosa and residual central visual fields.
    Gränse L; Ponjavic V; Andréasson S
    Acta Ophthalmol Scand; 2004 Dec; 82(6):701-6. PubMed ID: 15606467
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exclusion of influences of ARMS2 polymorphisms on the central visual field in retinitis pigmentosa.
    Masahara H; Nakazawa M; Kawamura E; Eguchi S
    Ophthalmologica; 2014; 231(1):51-7. PubMed ID: 24217333
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physiologic statokinetic dissociation is eliminated by equating static and kinetic perimetry testing procedures.
    Phu J; Al-Saleem N; Kalloniatis M; Khuu SK
    J Vis; 2016 Nov; 16(14):5. PubMed ID: 27829104
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A visual field quantification system for the Goldmann Perimeter.
    Odaka T; Fujisawa K; Akazawa K; Sakamoto M; Kinukawa N; Kamakura T; Nishioka Y; Itasaka H; Watanabe Y; Nose Y
    J Med Syst; 1992 Aug; 16(4):161-9. PubMed ID: 1460401
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of retinal vessels in eyes with retinitis pigmentosa by retinal oximeter.
    Ueda-Consolvo T; Fuchizawa C; Otsuka M; Nakagawa T; Hayashi A
    Acta Ophthalmol; 2015 Sep; 93(6):e446-50. PubMed ID: 25403794
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Electrophysiological study on the retinitis pigmentosa].
    Imaizumi K
    Nippon Ganka Gakkai Zasshi; 1969 Nov; 73(11):2347-496. PubMed ID: 5391946
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.