These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of thermal treatment, ionic strength, and pH on the short-term and long-term coalescence stability of beta-lactoglobulin emulsions. Tcholakova S; Denkov ND; Sidzhakova D; Campbell B Langmuir; 2006 Jul; 22(14):6042-52. PubMed ID: 16800657 [TBL] [Abstract][Full Text] [Related]
3. Chemical composition and functional properties of gum exudates from the trunk of the almond tree (Prunus dulcis). Mahfoudhi N; Chouaibi M; Donsì F; Ferrari G; Hamdi S Food Sci Technol Int; 2012 Jun; 18(3):241-50. PubMed ID: 22701057 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of formation and functional properties of conjugates prepared by dry-state incubation of beta-lactoglobulin/acacia gum electrostatic complexes. Schmitt C; Bovay C; Frossard P J Agric Food Chem; 2005 Nov; 53(23):9089-99. PubMed ID: 16277407 [TBL] [Abstract][Full Text] [Related]
5. Effect of ultrasonication, pH and heating on stability of apricot gum-lactoglobuline two layer nanoemulsions. Shamsara O; Muhidinov ZK; Jafari SM; Bobokalonov J; Jonmurodov A; Taghvaei M; Kumpugdee-Vollrath M Int J Biol Macromol; 2015 Nov; 81():1019-25. PubMed ID: 26432369 [TBL] [Abstract][Full Text] [Related]
6. Emulsifying properties of legume proteins compared to β-lactoglobulin and Tween 20 and the volatile release from oil-in-water emulsions. Benjamin O; Silcock P; Beauchamp J; Buettner A; Everett DW J Food Sci; 2014 Oct; 79(10):E2014-22. PubMed ID: 25212592 [TBL] [Abstract][Full Text] [Related]
7. Modulation of emulsion rheology through electrostatic heteroaggregation of oppositely charged lipid droplets: influence of particle size and emulsifier content. Mao Y; McClements DJ J Colloid Interface Sci; 2012 Aug; 380(1):60-6. PubMed ID: 22683214 [TBL] [Abstract][Full Text] [Related]
8. Characterization and emulsifying properties of β-lactoglobulin-gum Acacia Seyal conjugates prepared via the Maillard reaction. Bi B; Yang H; Fang Y; Nishinari K; Phillips GO Food Chem; 2017 Jan; 214():614-621. PubMed ID: 27507517 [TBL] [Abstract][Full Text] [Related]
9. Effect of time on the interfacial and foaming properties of beta-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2. Schmitt C; da Silva TP; Bovay C; Rami-Shojaei S; Frossard P; Kolodziejczyk E; Leser ME Langmuir; 2005 Aug; 21(17):7786-95. PubMed ID: 16089384 [TBL] [Abstract][Full Text] [Related]
10. Stabilization mechanism of oil-in-water emulsions by β-lactoglobulin and gum arabic. Bouyer E; Mekhloufi G; Le Potier I; de Kerdaniel Tdu F; Grossiord JL; Rosilio V; Agnely F J Colloid Interface Sci; 2011 Feb; 354(2):467-77. PubMed ID: 21145063 [TBL] [Abstract][Full Text] [Related]
11. Effect of glycosylation with gum Arabic by Maillard reaction in a liquid system on the emulsifying properties of canola protein isolate. Pirestani S; Nasirpour A; Keramat J; Desobry S; Jasniewski J Carbohydr Polym; 2017 Feb; 157():1620-1627. PubMed ID: 27987876 [TBL] [Abstract][Full Text] [Related]
12. Comparison of binary cress seed mucilage (CSM)/β-lactoglobulin (BLG) and ternary CSG-BLG-Ca (calcium) complexes as emulsifiers: Interfacial behavior and freeze-thawing stability. Taheri A; Kashaninejad M; Tamaddon AM; Jafari SM Carbohydr Polym; 2021 Aug; 266():118148. PubMed ID: 34044955 [TBL] [Abstract][Full Text] [Related]
13. Structural features of a new water-soluble polysaccharide from the gum exudates of Amygdalus scoparia Spach (Zedo gum). Molaei H; Jahanbin K Carbohydr Polym; 2018 Feb; 182():98-105. PubMed ID: 29279132 [TBL] [Abstract][Full Text] [Related]
14. Optimization of functional nanoparticles formation in associative mixture of water-soluble portion of Farsi gum and beta-lactoglobulin. Hadian M; Hosseini SMH; Farahnaky A; Mesbahi GR Int J Biol Macromol; 2017 Sep; 102():1297-1303. PubMed ID: 28495628 [TBL] [Abstract][Full Text] [Related]
15. Preparation, characterization and functional evaluation of soy protein isolate-peach gum conjugates prepared by wet heating Maillard reaction. Hussain A; Hussain M; Ashraf W; Karim A; Muhammad Aqeel S; Khan A; Hussain A; Khan S; Lianfu Z Food Res Int; 2024 Sep; 192():114681. PubMed ID: 39147541 [TBL] [Abstract][Full Text] [Related]
16. Core-shell biopolymer nanoparticles produced by electrostatic deposition of beet pectin onto heat-denatured beta-lactoglobulin aggregates. Santipanichwong R; Suphantharika M; Weiss J; McClements DJ J Food Sci; 2008 Aug; 73(6):N23-30. PubMed ID: 19241582 [TBL] [Abstract][Full Text] [Related]
17. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B. Knudsen JC; Øgendal LH; Skibsted LH Langmuir; 2008 Mar; 24(6):2603-10. PubMed ID: 18288877 [TBL] [Abstract][Full Text] [Related]
18. Formation of hydrogel particles by thermal treatment of beta-lactoglobulin-chitosan complexes. Hong YH; McClements DJ J Agric Food Chem; 2007 Jul; 55(14):5653-60. PubMed ID: 17567036 [TBL] [Abstract][Full Text] [Related]
19. Encapsulation of grape seed phenolic-rich extract within W/O/W emulsions stabilized with complexed biopolymers: Evaluation of their stability and release. Estévez M; Güell C; De Lamo-Castellví S; Ferrando M Food Chem; 2019 Jan; 272():478-487. PubMed ID: 30309571 [TBL] [Abstract][Full Text] [Related]
20. Effect of pH on the emulsifying performance of protein-polysaccharide complexes. Zhang R; Corstens M; Luo Z; Cao J; Schroen K J Sci Food Agric; 2024 Sep; 104(12):7649-7655. PubMed ID: 38767462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]