BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 27059111)

  • 1. Lignin-Based Thermoplastic Materials.
    Wang C; Kelley SS; Venditti RA
    ChemSusChem; 2016 Apr; 9(8):770-83. PubMed ID: 27059111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards lignin derived thermoplastic polymers.
    Parit M; Jiang Z
    Int J Biol Macromol; 2020 Dec; 165(Pt B):3180-3197. PubMed ID: 33065157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV-absorbent lignin-based multi-arm star thermoplastic elastomers.
    Yu J; Wang J; Wang C; Liu Y; Xu Y; Tang C; Chu F
    Macromol Rapid Commun; 2015 Feb; 36(4):398-404. PubMed ID: 25545630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Characterization of Biobased Lignin-Co-Polyester/Amide Thermoplastics.
    Young EL; McDonald AG
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33922098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignin valorization: improving lignin processing in the biorefinery.
    Ragauskas AJ; Beckham GT; Biddy MJ; Chandra R; Chen F; Davis MF; Davison BH; Dixon RA; Gilna P; Keller M; Langan P; Naskar AK; Saddler JN; Tschaplinski TJ; Tuskan GA; Wyman CE
    Science; 2014 May; 344(6185):1246843. PubMed ID: 24833396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoplastic biodegradable elastomers based on ε-caprolactone and L-lactide block co-polymers: a new synthetic approach.
    Lipik VT; Kong JF; Chattopadhyay S; Widjaja LK; Liow SS; Venkatraman SS; Abadie MJ
    Acta Biomater; 2010 Nov; 6(11):4261-70. PubMed ID: 20566308
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Turco R; Santagata G; Corrado I; Pezzella C; Di Serio M
    Front Bioeng Biotechnol; 2020; 8():619266. PubMed ID: 33585417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. About Making Lignin Great Again-Some Lessons From the Past.
    Glasser WG
    Front Chem; 2019; 7():565. PubMed ID: 31555636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignin-Only Polymeric Materials Based on Unmethylated Unfractionated Kraft and Ball-Milled Lignins Surpass Polyethylene and Polystyrene in Tensile Strength.
    Chen YR; Sarkanen S; Wang YY
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31861051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Ionomeric Renewable Thermoplastic from Lignin-Reinforced Rubber.
    Barnes SH; Goswami M; Nguyen NA; Keum JK; Bowland CC; Chen J; Naskar AK
    Macromol Rapid Commun; 2019 Jul; 40(13):e1900059. PubMed ID: 31021483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers.
    Kaneko T; Thi TH; Shi DJ; Akashi M
    Nat Mater; 2006 Dec; 5(12):966-70. PubMed ID: 17128261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kraft lignin chain extension chemistry via propargylation, oxidative coupling, and Claisen rearrangement.
    Sen S; Sadeghifar H; Argyropoulos DS
    Biomacromolecules; 2013 Oct; 14(10):3399-408. PubMed ID: 23962343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.
    Sridhar V; Xiu ZZ; Xu D; Lee SH; Kim JK; Kang DJ; Bang DS
    Waste Manag; 2009 Mar; 29(3):1058-66. PubMed ID: 18838261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective.
    Upton BM; Kasko AM
    Chem Rev; 2016 Feb; 116(4):2275-306. PubMed ID: 26654678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer.
    Puskas JE; Foreman-Orlowski EA; Lim GT; Porosky SE; Evancho-Chapman MM; Schmidt SP; El Fray M; Piatek M; Prowans P; Lovejoy K
    Biomaterials; 2010 Mar; 31(9):2477-88. PubMed ID: 20034664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable Elastomers from Renewable Biomass.
    Wang Z; Yuan L; Tang C
    Acc Chem Res; 2017 Jul; 50(7):1762-1773. PubMed ID: 28636365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermosetting Polymers from Lignin Model Compounds and Depolymerized Lignins.
    Feghali E; Torr KM; van de Pas DJ; Ortiz P; Vanbroekhoven K; Eevers W; Vendamme R
    Top Curr Chem (Cham); 2018 Jul; 376(4):32. PubMed ID: 29992468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Review of the Properties and Modifications of Carbon Fiber-Reinforced Thermoplastic Composites.
    Alshammari BA; Alsuhybani MS; Almushaikeh AM; Alotaibi BM; Alenad AM; Alqahtani NB; Alharbi AG
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waste Rubber Recycling: A Review on the Evolution and Properties of Thermoplastic Elastomers.
    Fazli A; Rodrigue D
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blend configuration in functional polymeric materials with a high lignin content.
    Wang YY; Chen YR; Sarkanen S
    Faraday Discuss; 2017 Sep; 202():43-59. PubMed ID: 28702628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.